7,362 research outputs found

    Role of anisotropy for protein-protein encounter

    Full text link
    Protein-protein interactions comprise both transport and reaction steps. During the transport step, anisotropy of proteins and their complexes is important both for hydrodynamic diffusion and accessibility of the binding site. Using a Brownian dynamics approach and extensive computer simulations, we quantify the effect of anisotropy on the encounter rate of ellipsoidal particles covered with spherical encounter patches. We show that the encounter rate kk depends on the aspect ratios ξ\xi mainly through steric effects, while anisotropic diffusion has only a little effect. Calculating analytically the crossover times from anisotropic to isotropic diffusion in three dimensions, we find that they are much smaller than typical protein encounter times, in agreement with our numerical results.Comment: 4 pages, Revtex with 3 figures, to appear as a Rapid Communication in Physical Review

    EVS: Head-up or Head Down? Evaluation of Crew Procedure and Human Factors for Enhanced Vision Systems

    Get PDF
    Feasibility of an EVS head-down procedure is examined that may provide the same operational benefits under low visibility as the FAA rule on Enhanced Flight Visibility that requires the use of a head-up display (HUD). The main element of the described EVS head-down procedure is the crew procedure within cockpit for flying the approach. The task sharing between Pilot-Flying and Pilot-Not-Flying is arranged such that multiple head-up/head-down transitions can be avoided. The pilot-flying is using the head-down display for acquisition of the necessary visual cues in the EVS image. The pilot-not-flying is monitoring the instruments and looking for the outside visual cues

    Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction

    Full text link
    For a cell moving in hydrodynamic flow above a wall, translational and rotational degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling of convection and diffusion due to the position-dependent mobility. These couplings render calculation of the mean encounter time between cell surface receptors and ligands on the substrate very difficult. Here we show for a two-dimensional model system how analytical progress can be achieved by treating motion in the vertical direction by an effective reaction term in the mean first passage time equation for the rotational degree of freedom. The strength of this reaction term can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical results are confirmed by computer simulations and allow to assess the relative roles of convection and diffusion for different scaling regimes of interest.Comment: Reftex, postscript figures include

    Stochastic simulations of cargo transport by processive molecular motors

    Full text link
    We use stochastic computer simulations to study the transport of a spherical cargo particle along a microtubule-like track on a planar substrate by several kinesin-like processive motors. Our newly developed adhesive motor dynamics algorithm combines the numerical integration of a Langevin equation for the motion of a sphere with kinetic rules for the molecular motors. The Langevin part includes diffusive motion, the action of the pulling motors, and hydrodynamic interactions between sphere and wall. The kinetic rules for the motors include binding to and unbinding from the filament as well as active motor steps. We find that the simulated mean transport length increases exponentially with the number of bound motors, in good agreement with earlier results. The number of motors in binding range to the motor track fluctuates in time with a Poissonian distribution, both for springs and cables being used as models for the linker mechanics. Cooperativity in the sense of equal load sharing only occurs for high values for viscosity and attachment time.Comment: 40 pages, Revtex with 13 figures, to appear in Journal of Chemical Physic

    Hybrid computer Monte-Carlo techniques

    Get PDF
    Hybrid analog-digital computer systems for Monte Carlo method application

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte

    The Localization Length of Stationary States in the Nonlinear Schreodinger Equation

    Full text link
    For the nonlinear Schreodinger equation (NLSE), in presence of disorder, exponentially localized stationary states are found. In the present Letter it is demonstrated analytically that the localization length is typically independent of the strength of the nonlinearity and is identical to the one found for the corresponding linear equation. The analysis makes use of the correspondence between the stationary NLSE and the Langevin equation as well as of the resulting Fokker-Planck equation. The calculations are performed for the ``white noise'' random potential and an exact expression for the exponential growth of the eigenstates is obtained analytically. It is argued that the main conclusions are robust

    New Abundances for Old Stars - Atomic Diffusion at Work in NGC 6397

    Full text link
    A homogeneous spectroscopic analysis of unevolved and evolved stars in the metal-poor globular cluster NGC 6397 with FLAMES-UVES reveals systematic trends of stellar surface abundances that are likely caused by atomic diffusion. This finding helps to understand, among other issues, why the lithium abundances of old halo stars are significantly lower than the abundance found to be produced shortly after the Big Bang.Comment: 8 pages, 7 colour figures, 1 table; can also be downloaded via http://www.eso.org/messenger

    Mean first passage times for bond formation for a Brownian particle in linear shear flow above a wall

    Full text link
    Motivated by cell adhesion in hydrodynamic flow, here we study bond formation between a spherical Brownian particle in linear shear flow carrying receptors for ligands covering the boundary wall. We derive the appropriate Langevin equation which includes multiplicative noise due to position-dependent mobility functions resulting from the Stokes equation. We present a numerical scheme which allows to simulate it with high accuracy for all model parameters, including shear rate and three parameters describing receptor geometry (distance, size and height of the receptor patches). In the case of homogeneous coating, the mean first passage time problem can be solved exactly. In the case of position-resolved receptor-ligand binding, we identify different scaling regimes and discuss their biological relevance.Comment: final version after minor revision

    Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    Full text link
    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.Comment: 8 pages, 3 figures, 1 tabl
    • …
    corecore