137 research outputs found

    Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees

    Get PDF
    Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined.</p

    Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees

    Get PDF
    Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined

    Molecular and Functional Characterization of NKG2D, NKp80, and NKG2C Triggering NK Cell Receptors in Rhesus and Cynomolgus Macaques: Monitoring of NK Cell Function during Simian HIV Infection

    Get PDF
    Abstract An involvement of innate immunity and of NK cells during the priming of adaptive immune responses has been recently suggested in normal and disease conditions such as HIV infection and acute myelogenous leukemia. The analysis of NK cell-triggering receptor expression has been so far restricted to only NKp46 and NKp30 in Macaca fascicularis. In this study, we extended the molecular and functional characterization to the various NK cell-triggering receptors using PBMC and to the in vitro-derived NK cell populations by cytofluorometry and by cytolytic activity assays. In addition, RT-PCR strategy, cDNA cloning/sequencing, and transient transfections were used to identify and characterize NKp80, NKG2D, CD94/NKG2C, and CD94/NKG2A in M. fascicularis and Macaca mulatta as well as in the signal transducing polypeptide DNAX-activating protein DAP-10. Both M. fascicularis and M. mulatta NK cells express NKp80, NKG2D, and NKG2C molecules, which displayed a high degree of sequence homology with their human counterpart. Analysis of NK cells in simian HIV-infected M. fascicularis revealed reduced surface expression of selected NK cell-triggering receptors associated with a decreased NK cell function only in some animals. Overall surface density of NK cell-triggering receptors on peripheral blood cells and their triggering function on NK cell populations derived in vitro was not decreased compared with uninfected animals. Thus, triggering NK cell receptor monitoring on macaque NK cells is possible and could provide a valuable tool for assessing NK cell function during experimental infections and for exploring possible differences in immune correlates of protection in humans compared with cynomolgus and rhesus macaques undergoing different vaccination strategies

    Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1.

    Get PDF
    The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.This project was conducted under the auspices of of the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) as part of the Collaboration for AIDS Vaccine Discovery (CAVD) with support from the Bill and Melinda Gates Foundation.This is the accepted manuscript of a paper published in the Journal of General Virology (Mooij P, et al., Journal of General Virology, 2015, 96, 1478-1483, doi:10.1099/vir.0.000074). The final version is available at http://dx.doi.org/10.1099/vir.0.00007

    Evaluation of IL-28B Polymorphisms and Serum IP-10 in Hepatitis C Infected Chimpanzees

    Get PDF
    In humans, clearance of hepatitis C virus (HCV) infection is associated with genetic variation near the IL-28B gene and the induction of interferon-stimulated genes, like IP-10. Also in chimpanzees spontaneous clearance of HCV is observed. To study whether similar correlations exist in these animals, a direct comparison of IP-10 and IL-28B polymorphism between chimpanzees and patients was performed. All chimpanzees studied were monomorphic for the human IL-28B SNPs which are associated with spontaneous and treatment induced HCV clearance in humans. As a result, these particular SNPs cannot be used for clinical association studies in chimpanzees. Although these human SNPs were absent in chimpanzees, gene variation in this region was present however, no correlation was observed between different SNP-genotypes and HCV outcome. Strikingly, IP-10 levels in chimpanzees correlated with HCV-RNA load and γGT, while such correlations were not observed in humans. The correlation between IP-10, γGT and virus load in chimpanzees was not found in patients and may be due to the lack of lifestyle-related confounding factors in chimpanzees. Direct comparison of IP-10 and IL-28B polymorphism between chimpanzees and patients in relation to HCV infection, illustrates that the IFN-pathways are important during HCV infection in both species. The Genbank EMBL accession numbers assigned to chimpanzees specific sequences near the IL-28B gene are HE599784 and HE599785

    Modeling Personalized Adjuvant TreaTment in EaRly stage coloN cancer (PATTERN)

    Get PDF
    Aim To develop a decision model for the population-level evaluation of strategies to improve the selection of stage II colon cancer (CC) patients who benefit from adjuvant chemotherapy. Methods A Markov cohort model with a one-month cycle length and a lifelong time horizon was developed. Five health states were included; diagnosis, 90-day mortality, death other causes, recurrence and CC death. Data from the Netherlands Cancer Registry were used to parameterize the model. Transition probabilities were estimated using parametric survival models including relevant clinical and pathological covariates. Subsequently, biomarker status was implemented using external data. Treatment effect was incorporated using pooled trial data. Model development, data sources used, parameter estimation, and internal and external validation are described in detail. To illustrate the use of the model, three example strategies were evaluated in which allocation of treatment was based on (A) 100% adherence to the Dutch guidelines, (B) observed adherence to guideline recommendations and (C) a biomarker-driven strategy. Results Overall, the model showed good internal and external validity. Age, tumor growth, tumor sidedness, evaluated lymph nodes, and biomarker status were included as covariates. For the example strategies, the model predicted 83, 87 and 77 CC deaths after 5 years in a cohort of 1000 patients for strategies A, B and C, respectively. Conclusion This model can be used to evaluate strategies for the allocation of adjuvant chemotherapy in stage II CC patients. In future studies, the model will be used to estimate population-level long-term health gain and cost-effectiveness of biomarker-based selection strategies.Financial support for this study was provided by a grant from ZonMw (Grant number: 848015007). ZonMw had no role in designing the study, interpreting the data, writing the manuscript, and publishing the report

    Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation

    Get PDF
    AFLP is a DNA fingerprinting technique, resulting in binary band presence–absence patterns, called profiles, with known or unknown band positions. We model AFLP as a sampling procedure of fragments, with lengths sampled from a distribution. Bands represent fragments of specific lengths. We focus on estimation of pairwise genetic similarity, defined as average fraction of common fragments, by AFLP. Usual estimators are Dice (D) or Jaccard coefficients. D overestimates genetic similarity, since identical bands in profile pairs may correspond to different fragments (homoplasy). Another complicating factor is the occurrence of different fragments of equal length within a profile, appearing as a single band, which we call collision. The bias of D increases with larger numbers of bands, and lower genetic similarity. We propose two homoplasy- and collision-corrected estimators of genetic similarity. The first is a modification of D, replacing band counts by estimated fragment counts. The second is a maximum likelihood estimator, only applicable if band positions are available. Properties of the estimators are studied by simulation. Standard errors and confidence intervals for the first are obtained by bootstrapping, and for the second by likelihood theory. The estimators are nearly unbiased, and have for most practical cases smaller standard error than D. The likelihood-based estimator generally gives the highest precision. The relationship between fragment counts and precision is studied using simulation. The usual range of band counts (50–100) appears nearly optimal. The methodology is illustrated using data from a phylogenetic study on lettuce

    Clearance of Genotype 1b Hepatitis C Virus in Chimpanzees in the Presence of Vaccine-Induced E1-Neutralizing Antibodies

    Get PDF
    Accumulating evidence indicates that neutralizing antibodies play an important role in protection from chronic hepatitis C virus (HCV) infection. Efforts to elicit such responses by immunization with intact heterodimeric E1E2 envelope proteins have met with limited success. To determine whether antigenic sites, which are not exposed by the combined E1E2 heterodimer structure, are capable of eliciting neutralizing antibody responses, we expressed and purified each as separate recombinant proteins E1 and E2, from which the immunodominant hypervariable region (HVR-1) was deleted. Immunization of chimpanzees with either E1 or E2 alone induced antigen-specific T-helper cytokines of similar magnitude. Unexpectedly, the capacity to neutralize HCV was observed in E1 but not in animals immunized with E2 devoid of HVR-1. Furthermore, in vivo only E1-vaccinated animals exposed to the heterologous HCV-1b inoculum cleared HCV infection

    Novel application of [18F]DPA714 for visualizing the pulmonary inflammation process of SARS-CoV-2-infection in rhesus monkeys (Macaca mulatta)

    Get PDF
    RATIONALE: The aim of this study was to investigate the application of [18F]DPA714 to visualize the inflammation process in the lungs of SARS-CoV-2-infected rhesus monkeys, focusing on the presence of pulmonary lesions, activation of mediastinal lymph nodes and surrounded lung tissue. METHODS: Four experimentally SARS-CoV-2 infected rhesus monkeys were followed for seven weeks post infection (pi) with a weekly PET-CT using [18F]DPA714. Two PET images, 10 min each, of a single field-of-view covering the chest area, were obtained 10 and 30 min after injection. To determine the infection process swabs, blood and bronchoalveolar lavages (BALs) were obtained. RESULTS: All animals were positive for SARS-CoV-2 in both the swabs and BALs on multiple timepoints pi. The initial development of pulmonary lesions was already detected at the first scan, performed 2-days pi. PET revealed an increased tracer uptake in the pulmonary lesions and mediastinal lymph nodes of all animals from the first scan obtained after infection and onwards. However, also an increased uptake was detected in the lung tissue surrounding the lesions, which persisted until day 30 and then subsided by day 37-44 pi. In parallel, a similar pattern of increased expression of activation markers was observed on dendritic cells in blood. PRINCIPAL CONCLUSIONS: This study illustrates that [18F]DPA714 is a valuable radiotracer to visualize SARS-CoV-2-associated pulmonary inflammation, which coincided with activation of dendritic cells in blood. [18F]DPA714 thus has the potential to be of added value as diagnostic tracer for other viral respiratory infections
    corecore