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response against the conserved regions of HIV-1. 4 
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Summary 27 

The Thai trial (RV144) indicates that a prime/boost vaccine combination that induces 28 

both T-cell and antibody responses may be desirable for an effective HIV vaccine. We 29 

have previously shown that immunisation with synthetic long peptides (SLP), 30 

covering the conserved parts of SIV, induced strong CD4 T-cell and antibody 31 

responses, but only modest CD8 T-cell responses. To generate a more balanced 32 

CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP 33 

boost strategy in rhesus macaques. Priming with a replication competent NYVAC, 34 

encoding HIV-1 clade C gag, pol, nef, induced modest IFNγ T-cell immune 35 

responses, predominantly directed against HIV-1 gag. Booster immunization with 36 

SLP, covering the conserved parts of HIV-1 gag, pol, env, resulted in a more than 10 37 

fold increase in IFNγ ELISpot responses in 4 of 6 animals, which were predominantly 38 

HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-39 

cell response and high Ab titers.  40 

Keywords: 41 
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 46 
Ideally a vaccine against human immunodeficiency virus type 1 (HIV-1) 47 

should be capable of inducing broadly neutralizing antibodies as well as effective T-48 

cell responses (Walker & Burton, 2008). Although these goals have not yet been 49 

achieved, results from the phase III Thai trial (RV144) indicate  that  with  a 50 

recombinant  canarypox  (ALVAC-HIV,  vCP1521)  prime  –  gp120  (AIDSVAX B/E) 51 

protein boost immunization strategy, that induces both CD4 T-cell as well as antibody 52 

responses,  the  risk  of  acquiring HIV-1  infection  is  decreased  (Haynes et al., 2012; 53 

Rerks-Ngarm et al., 2009).  54 

Three  of  the  best  characterized  highly  attenuated  pox  vectors  are  ALVAC, 55 

Modified Vaccinia virus Ankara (MVA) and NYVAC (Drexler et al., 2004; Franchini 56 

et al., 2004; Gomez et al., 2011; Paoletti et al., 1994). NYVAC was derived from the 57 

parental Copenhagen strain by deletion of 18 specific open reading frames, including 58 

the  host  range  genes  K1L  and  C7L.  Reinsertion  of  these  two  genes  resulted  in  an 59 

improved  vaccine  vector,  designated  NYVAC-KC,  which  yielded  higher  levels  of 60 

antigen  expression  in  infected  cells,  was  replication  competent  in  human 61 

keratinocytes  and  dermal  fibroblasts,  but  maintained  a  highly  attenuated  phenotype 62 

(Kibler et al., 2011). In addition, NYVAC-KC showed enhanced capacity to stimulate 63 

dendritic cell maturation, antigen processing and presentation and stimulation of CD8 64 

T-cell responses through cross presentation (Quakkelaar et al., 2011).  65 

Synthetic long peptides (SLP) are a relatively novel vaccine modality designed 66 

as approximately 30-mer peptides overlapping by 10 to 15 amino acids. The peptide 67 

length strongly favours processing by ‘professional’ antigen-presenting  cells  instead 68 

of  direct  binding  to major  histocompatibility  complex  class  I molecules  on  the  cell 69 

surface  and  this  provides  a  parallel  stimulation  of  both  CD4  T-helper  and  CD8 70 
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cytotoxic  T-cells (Melief & van der Burg, 2008; Zhang et al., 2009).  Using  this 71 

approach  for  human papilloma virus  16 we have  previously  demonstrated  a  clinical 72 

benefit  in  patients  with  high-risk  human  papilloma  virus  type  16-induced 73 

premalignant vulvar lesions (Kenter et al., 2009; Welters et al., 2010).  74 

  Both  broad  neutralizing  antibody  and  T-cell  inducing  vaccines  face  the 75 

problem  of  the  extreme  variability  of  the  HIV-1  genome.  To  address  HIV-1 76 

variability  and  escape,  a  novel  pan-clade  immunogen  HIVconsv  was  assembled, 77 

derived  from  the  14  most  conserved  regions  of  the  HIV-1  consensus  proteomes 78 

(Letourneau et al., 2007).  It  was  previously  demonstrated  that  immunization  with 79 

SLP,  covering  the  HIVconsv  sequence  greatly  enhanced  the  breadth  and  overall 80 

magnitude of the CD4 and CD8 T-cell response in DNA.HIVconsv/human adenovirus 81 

serotype  5  HAdV5.HIVconsv/  MVA.HIVconsv  immunized  animals,  but  was  less 82 

effective when used for priming (Rosario et al., 2012; Rosario et al., 2010). However, 83 

improved adjuvantation via simultaneous injection of pegylated type I IFN resulted in 84 

induction  of  high  immune  responses  after  two  immunizations  with  SLP.SIVconsv 85 

only (Koopman et al, 2013). In addition, increased expression of TRAIL on NK cells 86 

and  CD80  on  plasmacytoid  dendritic  cells  was  noted  2  days  following  SLP 87 

immunization  in  the  presence  of  type  I  IFN,  suggesting  enhanced  activation  of  the 88 

innate  immune system.  In contrast to the HIVconsv prime/boost strategies described 89 

by Rosario et al,  the type I IFN adjuvanted SLP was  found to induce predominantly 90 

CD4 T-cell  responses  of  central memory phenotype, while  only modest CD8 T-cell 91 

responses with limited breadth were generated (Koopman et al., 2013).  92 

Here, we explored the possibility of obtaining a more balanced CD4/CD8 T-93 

cell response by using a pox-vector prime/SLP boost strategy, employing the recently 94 
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developed  replication  competent  NYVAC  vector  plus  type  I  IFN  adjuvanted 95 

SLP.HIVconsv.  96 

The  current  study  was  performed  in  six  mature  captive-bred  Indian  origin 97 

rhesus  monkeys  (R1-R6,  Macaca  mulatta),  housed  at  the  Biomedical  Primate 98 

Research Centre, Rijswijk, The Netherlands, according to international guidelines for 99 

non-human primate care and use (The European Council Directive 86/609/EEC, and 100 

Convention ETS 123, including the revised Appendix A). The animals were negative 101 

for  antibodies  to  SIV-1,  simian  type  D  retrovirus  and  simian  T-cell  lymphotropic 102 

virus.  During  the  course  of  the  study,  the  animals  were  checked  twice  daily  for 103 

appetite  and  general  behaviour  and  stools  were  checked  for  consistency.  At  each 104 

sedation  (ketamine  10mg/kg)  for  blood  collection or  immunization  the  body weight 105 

and  body  temperature  were  measured.  The  Institutional  Animals  Care  and  Use 106 

Committee (DEC-BPRC) approved the study protocols developed according to  strict 107 

international  ethical  and  scientific  standards  and  guidelines.  The  rhesus macaques 108 

were immunized at week 0, 4 and 12 by intradermal injection of NYVAC-C-KC-109 

Gag(ZM96)-Pol-Nef(CN54) (108 pfu per immunization). The generation of 110 

replication competent NYVAC-C-KC expressing the HIV-1 Clade C genes Gag (from 111 

isolate 96ZM651 (Acc.Nr. AF286224), abbreviated “ZM96”) and PolNef (from 112 

isolate 97CN54 (Acc.Nr. AX149647.1), abbreviated “CN54”), will be described 113 

elsewhere, and a similar vector expressing Gag-Pol-Nef from clade C CN54 was 114 

described previously (Kibler et al., 2011). The replication competent NYVAC vector 115 

containing  the  cassette  Gag  (ZM96)  and  Pol-Nef  (CN54)  produces  mainly  Gag  as 116 

VLPs  as  cell-released  products  and  to  a  lesser  extent  Pol-Nef  due  to  a  ribosomal 117 

frame-shift (Perdiguero et al., 2014).  The NYVAC vector was grown in primary CEF 118 

cells and purified by sedimentation through two 36% sucrose cushions. Virus titers 119 
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were determined by plaque assay in monkey BSC-40 cells. Subsequently, animals 120 

were boosted twice at week 58 and 62 with SLP.HIVconsv, given in a decreasing 121 

dose range of 100 and 30 μg of each peptide. SLP used in this study were based on 122 

the previously described HIVconsv sequence (Letourneau et al., 2007) and comprised 123 

a set of 33 peptides ranging in length from 26 to 27 amino acids (aa) and covering the 124 

Gag1,2,3, Pol 4,5,7,8,10 and Env 9,14  regions. Synthetic peptides were dissolved in 125 

20% dimethyl sulfoxide (DMSO), 20 mM PBS (pH 7.5) and divided into five sub-126 

pools; pp1 Gag1,2,3; pp2 Pol4; pp3 Pol5; pp4 Pol7,8,10; pp5 Env 9,14. On the day 127 

before vaccination, peptide pools were emulsified in Montanide ISA-720 (Seppic, 128 

Paris, France) adjuvant (DMSO/PBS/Montanide ISA-720 3:27:70, v/v/v) and kept at 129 

4 °C. Stability was checked as described before (Miles et al., 2005). Each of the 5 130 

vaccine peptide pools was injected s.c. at a separate site (right upper arm, left upper 131 

arm, right upper thigh, left upper thigh, lower back). Simultaneously, a dose of 132 

pegylated type I IFN (1 !g/kg) was given by s.c. injection. At the end of the 133 

procedure and again 48 hours later, the animals received on the injection sites topical 134 

imiquimod containing cream (Aldara Cream 5%, 12.5 mg imiquimod/250 mg cream) 135 

to enhance immunogenicity (Lore et al., 2003; Othoro et al., 2009). 136 

In  order  to  evaluate  the  immune  potency  of  the  prime  with  replication  competent 137 

NYVAC-C-KC (Quakkelaar et al., 2011), PBMC from six immunized animals were 138 

isolated using LSM density gradient centrifugation (Organon-Teknica) and tested for 139 

antigen-specific IFN" secretion by ELISPOT assay as described (Koopman et al., 140 

2008). As  shown  in  Fig.  1A,  clearly  detectable  antigen-specific IFNγ ELISpot 141 

responses  were  observed  already  after  one  immunization.  These  responses  were 142 

further  increased after  the  second  immunization  (p = 0.049,  t-test), but could  not be 143 

boosted anymore by a third NYVAC-C-KC immunization (p = 0.634, t-test) probably 144 
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because  of  the  induction  of  high  anti-vector  responses  (2850  ±  1740  spot  forming 145 

units  (SFU)  per  106  PBMC  (not  shown).  Responses  were  modest,  predominantly 146 

directed against gag (Fig. 1A), most probably because of a higher production of Gag 147 

VLPs  than  of  Pol-Nef,  due  to  the  nature  of  the NYVAC  vector  that makes  mainly 148 

extracellular  VLPs  (Perdiguero et al., 2014).  Responses  were  too  low  to  further 149 

characterize multifunctionality by ICS.   150 

At week 56, 44 weeks after the last NYVAC-C-KC immunization, memory T-151 

cell  responses  measured  against  HIV-1  Gag (ZM96, 2 pools),  the  most  dominant 152 

antigen after priming, were found to be negative in all animals (not shown). Likewise 153 

no IFNγ ELISpot responses were seen when animals were tested against the five 154 

conserved peptide pools  (Fig. 1B).  In contrast  to  the Gag dominated  responses  seen 155 

after priming,  the SLP booster  immunization  induced  besides  responses against Gag 156 

also  strong  responses  to  Pol  peptide  pools.  With  two  SLP  booster  immunizations, 157 

responses were amplified to above 2000 SFU/106 PBMC, but only  in  four out of six 158 

animals, the other two animals (R3 and R4) generating about 500 SFU/106 PBMC. In 159 

contrast,  previously  reported  SLP  booster  immunizations  in  DNA.HIVconsv/ 160 

HAdV5.HIVconsv/MVA.HIVconsv  primed  animals  or  DNA.SIVconsv  primed 161 

animals  gave  a  more  uniform  induction  of  high  responses  in  all  animals  over  time 162 

(Koopman et al., 2013; Raab et al., 2010).  Possibly,  the  application  of  different 163 

antigenic inserts, used for NYVAC priming and SLP booster immunization, may have 164 

contributed to less effective triggering of memory responses  in some animals  in this 165 

study, despite the considerable sequence overlap between the antigens (supplementary 166 

figure  1). Genetic  differences,  for  instance  in MHC  or KIR  expression  pattern  (not 167 

tested)  may  have  resulted  in  less  efficient  peptide  presentation  or  innate  immune 168 

stimulation  in  animals  R3  and  R4,  but  this  remains  speculative.  Importantly,  even 169 
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though  the  responses  against  Pol  were  very  low  after  priming,  the  SLP  booster 170 

immunization resulted in high Pol specific responses in three animals,  indicating that 171 

HIVconsv specific cross reactive memory responses can be triggered. Although Env 172 

was  only  included  during  boosting,  still  modest  responses  were  induced  in  two 173 

animals (Fig. 1B). The preferential amplification of Pol over Gag specific responses 174 

may be related to the composition of the SLP.HIVconsv immunogen, which contained 175 

7 Gag, 21 Pol and 5 Env peptides. 176 

Further  functional  characterization  of  vaccine-induced  cellular  immune 177 

responses for detection of IFN-γ, IL-2, and TNF-α (cytokine production, within CD4 178 

and CD8 T-cell subsets was performed by multiparameter flow cytometry (for FACS 179 

plot analysis, see supplementary figure 2) at the end of the study when animals were 180 

sacrificed  and  sufficient  PBMC  could  be  obtained  for  this  extensive  analysis,  as 181 

described  (Koopman et al., 2013). In the four animals with a high IFNγ ELISpot 182 

response  at  week  70,  strong  antigen-specific  CD4  and  CD8  T-cell  responses  were 183 

observed  (Fig.  2A).  Both CD4  and CD8 T-cell  responses were  polyfunctional with 184 

10-15%  triple  IFN-γ, IL-2,  TNF-α production  (Fig.    2B).  All  six  animals  were 185 

included  in this analysis. When comparing these results with IFNγ ELISpot and ICS 186 

responses induced by either SLP alone (SSS) and DNA prime and SLP boost (DDSS) 187 

described  before  (Koopman et al., 2013, supplementary figure 3),  it  becomes  clear 188 

that the magnitude and diversity of the IFNγ ELISpot responses as well as the antigen 189 

specific CD4 T-cell responses (ICS) were similar between the different immunization 190 

strategies  (supplementary  figure  3A  and  B,  left  and  middle  panels).  However, 191 

NYVAC  priming  followed  by  SLP  boosting  (NNNSS)  induced  higher  CD8  T-cell 192 

responses than DNA priming/SLP boosting (DDSS) (supplementary  figure 3A, right 193 

panel, p = 0.009, Mann-Whitney). More importantly, the diversity of the response was 194 
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highest  after NNNSS  immunization  (B,  right  panel, NNNSS versus SSS:  p =  0.009 195 

and NNNSS vs DDSS: p = 0.003, Mann-Whitney),  indicating that NYVAC priming 196 

followed by SLP boosting induced the most balanced CD4/CD8 T-cell response (both 197 

CD4 and CD8 T-cell responses with highest CD8 T-cell diversity). 198 

Antibody responses  to SLP.HIVconsv peptides measured by standard ELISA 199 

techniques (Koopman et al., 2013) were not induced by NYVAC-C-KC immunization 200 

(measured at 4 and 44 weeks post third immunization, not shown). Although it cannot 201 

be excluded that at these time points some antibody reactivity exists against the whole 202 

Gag  and Pol  proteins,  this  is  unlikely  as  these  responses  should  have  been  detected 203 

with  the SLP.HIVconsv peptides  due  to  the  considerable  sequence  overlap  between 204 

the  Gag  and  Pol  antigens  (supplementary  figure  1).  However,  all  SLP.HIVconsv 205 

boosted  animals  had  strong  antibody  responses  against  SLP.HIVconsv  peptides  (8 206 

weeks post 2nd boost, Fig. 3). 207 

The  increase  in  HIVconsv  specific  responses  in  animals  primed  with  a  divergent 208 

immunogen suggests that this strategy might also be useful for therapeutic vaccination 209 

in HIV-1  infected  people. However,  lack  of  pre-existing memory  responses  against 210 

the HIVconsv immunogen might be an issue, resulting in either poor enhancement or 211 

induction of  responses with  limited  breadth, a phenomenon also observed  in  two of 212 

our  SLP  boosted  animals.  This  NYVAC-C-KC  prime/SLP.HIVconsv  booster 213 

vaccination strategy demonstrated proof-of-concept  induction of  balanced CD4/CD8 214 

T-cell  responses  and  antibody  responses,  albeit  not  in  all  animals  immunized. 215 

Potentially,  this  strategy  could  increase  the  level  of  protection  against  intrarectal 216 

SIVmac251  challenge  that  was  obtained  in  a  SIVconsv  DNA  prime/SLP  boost 217 

strategy  (Koopman et al., 2013).  Unfortunately,  this  could  not  be  tested  in  this 218 

particular study because of the HIV origin of the immunogens. 219 
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Figure legends 336 

 337 

Fig.  1.  IFNγ ELISpot responses. (a) Antigen specific responses during NYVAC-C-338 

KC  priming  (week  0-14),  against  clade  C  peptide  pools.  (b)  Antigen  specific 339 

responses  during  SLP.HIVconsv  boosting  (week  56-70),  against  five  conserved 340 

peptide pools. Please note the difference in scales used for the Y-axis. 341 

 342 

Fig.  2.  Antigen  specific  cytokine  responses  measured  by  ICS.  (a)  Magnitude  of 343 

combined IFNγ, IL-2, TNFα cytokine response measured after the second 344 

SLP.HIVconsv  booster  immunization  (week  70).  Expressed  is  the  percentage  of 345 

positive  CD4  and  CD8  T-cells,  specified  for  each  of  the  five  peptide  pools.    (b) 346 

Cytokine expression pattern of total antigen specific response (mean responses of all 5 347 

peptide pools combined of all six animals) in CD4 and CD8 T-cells. Pies indicate the 348 

relative number of cells expressing one (dark), two (dark grey) or three (light grey) 349 

cytokines. Arcs indicate production of IFN-"# IL-2 and TNF-$.  350 

 351 

Fig. 3. Antibody responses. Antibody responses in serum against the HIVconsv long 352 

peptides, measured at week 70. Shown  is dilution  titre of positive  response. Lowest 353 

dilution tested =1:100. 354 
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