46 research outputs found

    Enzyme prodrug therapy achieves site-specific, personalized physiological responses to the locally produced nitric oxide

    Get PDF
    Nitric oxide (NO) is a highly potent but short-lived endogenous radical with a wide spectrum of physiological activities. In this work, we developed an enzymatic approach to the site-specific synthesis of NO mediated by biocatalytic surface coatings. Multilayered polyelectrolyte films were optimized as host compartments for the immobilized β-galactosidase (β-Gal) enzyme through a screen of eight polycations and eight polyanions. The lead composition was used to achieve localized production of NO through the addition of β-Gal–NONOate, a prodrug that releases NO following enzymatic bioconversion. The resulting coatings afforded physiologically relevant flux of NO matching that of the healthy human endothelium. The antiproliferative effect due to the synthesized NO in cell culture was site-specific: within a multiwell dish with freely shared media and nutrients, a 10-fold inhibition of cell growth was achieved on top of the biocatalytic coatings compared to the immediately adjacent enzyme-free microwells. The physiological effect of NO produced via the enzyme prodrug therapy was validated ex vivo in isolated arteries through the measurement of vasodilation. Biocatalytic coatings were deposited on wires produced using alloys used in clinical practice and successfully mediated a NONOate concentration-dependent vasodilation in the small arteries of rats. The results of this study present an exciting opportunity to manufacture implantable biomaterials with physiological responses controlled to the desired level for personalized treatment

    Motion Calculations on Stent Grafts in AAA

    Get PDF
    Endovascular aortic repair (EVAR) is a technique which uses stent grafts to treat aortic aneurysms in patients at risk of aneurysm rupture. Although this technique has been shown to be very successful on the short term, the long term results are less optimistic due to failure of the stent graft. The pulsating blood flow applies stresses and forces to the stent graft, which can cause problems such as breakage, leakage, and migration. Therefore it is of importance to gain more insight into the in vivo motion behavior of these devices. If we know more about the motion patterns in well-behaved stent graft as well as ill-behaving devices, we shall be better able to distinguish between these type of behaviors These insights will enable us to detect stent-related problems and might even be used to predict problems beforehand. Further, these insights will help in designing the next generation stent grafts. Firstly, this work discusses the applicability of ECG-gated CT for measuring the motions of stent grafts in AAA. Secondly, multiple methods to segment the stent graft from these data are discussed. Thirdly, this work proposes a method that uses image registration to apply motion to the segmented stent mode

    Effective low-dose sirolimus regimen for kaposiform haemangioendothelioma with Kasabach-Merritt phenomenon in young infants

    Get PDF
    Aims Management of kaposiform haemangioendotheliomas (KHE) with Kasabach-Merritt phenomenon is challenging in young infants who are subjected to developmental pharmacokinetic changes. Sirolimus, sometimes combined with corticosteroids, can be used as an effective treatment of KHE. Simultaneously, toxicities such as interstitial pneumonitis related to the use of sirolimus may be fatal. As infants have a very low CYP3-enzyme expression at birth, which rises during ageing, we hypothesize that a reduced metabolization of sirolimus might lead to high sirolimus serum levels and low dose may be sufficient without the side effects. Methods A case series of 5 infants with kaposiform haemangioendothelioma with Kasabach-Merritt phenomenon was analysed retrospectively. All infants were treated with sirolimus 0.2 mg/m(2) every 24 or 48 hours according to their age. Prednisone was added to the therapy for additional effect in 4 patients. Results In all patients, low dose of sirolimus led to therapeutic sirolimus levels (4-6 ng/mL). All infants (aged 4 days-7 months) had a complete haematological response, without serious adverse events. In all patients, the Kasabach-Merritt phenomenon resolved, the coagulation profile normalized and tumour size reduction was seen. Conclusion Low-dose sirolimus treatment is safe for infants with kaposiform haemangioendothelioma and Kasabach-Merritt phenomenon. It is essential to realize that during the first months of life, metabolism is still developing and enzymes necessary to metabolise drugs like sirolimus still have to mature. To avoid toxic levels, the sirolimus dosage should be based on age and the associated pharmacological developments

    The VASCERN-VASCA working group diagnostic and management pathways for severe and/or rare infantile hemangiomas

    Get PDF
    The European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), is dedicated to gathering the best expertise in Europe and provide accessible cross-border healthcare to patients with rare vascular dis-eases. Infantile Hemangiomas (IH) are benign vascular tumors of infancy that rapidly growth in the first weeks of life, followed by stabilization and spontaneous regression. In rare cases the extent, the localization or the number of lesions may cause severe complications that need specific and careful management. Severe IH may be life-threatening due to airway obstruction, liver or cardiac failure or may harbor a risk of functional impairment, severe pain, and/or significant and permanent disfigurement. Rare IHs include syndromic variants associated with extracutaneous abnormalities (PHACE and LUMBAR syndromes), and large segmental hemangiomas. There are publications that focus on evidence-based medicine on propranolol treatment for IH and consensus state -ments on the management of rare infantile hemangiomas mostly focused on PHACES syndrome. The Vascular Anomalies Working Group (VASCA-WG) decided to develop a diagnostic and management pathway for severe and rare IHs with a Nominal Group Technique (NGT), a well-established, structured, multistep, facilitated group meeting technique used to generate consensus statements. The pathway was drawn following two face-to-facePeer reviewe

    The VASCERN-VASCA working group diagnostic and management pathways for lymphatic malformations

    Get PDF
    Lymphatic malformations (LMs) are developmental defects of lymphatic vessels. LMs are histologically benign lesions, however, due to localization, size, and unexpected swelling, they may cause serious complications that threaten vital functions such as compression of the airways. A large swelling of the face or neck may also be disfiguring and thus constitute a psychological strain for patients and their families. LMs are also highly immunologically reactive, and are prone to recurrent infections and inflammation causing pain as well as chronic oozing wounds.The European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN) is dedicated to gathering the best expertise in Europe. There are only few available guidelines on management and follow up of LMs, which commonly focus on very specific situations, such as head and neck LM (Zhou et al., 2011). It is still unclear, what constitutes an indication for treatment of LMs and how to follow up the patients. The Vascular Anomalies Working Group (VASCA-WG) of VASCERN decided to develop a diagnostic and management pathway for the management of LMs with a Nominal Group Technique (NGT), a well-established, structured, multistep, facilitated group meeting technique used to generate consensus statements. The pathway was drawn following 2 face-to-face meetings and multiple web meetings to facilitate discussion, and by mail to avoid the influence of most authoritative members.The VASCA-WG has produced this opinion statement reflecting strategies developed by experts and patient representatives on how to approach patients with lymphatic malformations in a practical manner; we present an algorithmic view of the results of our work.Peer reviewe

    The VASCERN-VASCA Working Group Diagnostic and Management Pathways for Venous Malformations.

    Get PDF
    UNLABELLED To elaborate expert consensus patient pathways to guide patients and physicians toward efficient diagnostics and management of patients with venous malformations. METHODS VASCERN-VASCA (https://vascern.eu/) is a European network of multidisciplinary centers for Vascular Anomalies. The Nominal Group Technique was used to establish the pathways. Two facilitators were identified: one to propose initial discussion points and draw the pathways, and another to chair the discussion. A dermatologist (AD) was chosen as first facilitator due to her specific clinical and research experience. The draft was subsequently discussed within VASCERN-VASCA monthly virtual meetings and annual face-to-face meetings. RESULTS The Pathway starts from the clinical suspicion of a venous type malformation (VM) and lists the clinical characteristics to look for to support this suspicion. Strategies for subsequent imaging and histopathology are suggested. These aim to inform on the diagnosis and to separate the patients into 4 subtypes: (1) sporadic single VMs or (2) multifocal, (3) familial, multifocal, and (4) combined and/or syndromic VMs. The management of each type is detailed in subsequent pages of the pathway, which are color coded to identify sections on (1) clinical evaluations, (2) investigations, (3) treatments, and (4) associated genes. Actions relevant to all types are marked in separate boxes, including when imaging is recommended. When definite diagnoses have been reached, the pathway also points toward disease-specific additional investigations and recommendations for follow up. Options for management are discussed for each subtype, including conservative and invasive treatments, as well as novel molecular therapies. CONCLUSION The collaborative efforts of VASCERN-VASCA, a network of the 9 Expert Centers, has led to a consensus Diagnostic and Management Pathways for VMs to assist clinicians and patients. It also emphasizes the role of multidisciplinary expert centers in the management of VM patients. This pathway will become available on the VASCERN website (http://vascern.eu/)

    Detectability of motions in AAA with ECG-gated CTA: A quantitative study

    Get PDF
    Purpose: ECG-gated CT enables the visualization of motions caused by the beating of the heart. Although ECG gating is frequently used in cardiac CT imaging, this technique is also very promising for evaluating vessel wall motion of the aortic artery and the motions of (stent grafts inside) abdominal aortic aneurysms (AAA). Late stent graft failure is a serious complication in endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will be beneficial for designing future devices. In addition, these data can be valuable in predicting stent graft failure in patients. To be able to reliably quantify the motion, however, it is of importance to know the performance and limitations of ECG gating, especially when the motions are small, as is the case in AAA. Since the details of the reconstruction algorithms are proprietary information on the CT manufacturers and not in the public domain, empirical experiments are required. The goal of this study is to investigate as to what extent the motions in AAA can be measured using ECG-gated CT. The authors quantitatively investigate four aspects of motion in ECG-gated CT: The detectability of the motion of objects at different amplitudes and different periodic motions, the temporal resolution, and the volume gaps that occur as a function of heart rate.\ud \ud Methods: They designed an experiment on a standard static phantom to empirically determine temporal resolution. To investigate motion amplitude and frequency, as well as patient heart rate, they designed dynamic experiments in which a home-made phantom driven by a motion unit moves in a predetermined pattern.\ud \ud Results: The duration of each ECG-gated phase was found to be 185 ms, which corresponds to half of the rotation time and is thus in accordance with half scan reconstruction applied by the scanner. By using subpixel localization, motions become detectable from amplitudes of as small as 0.4 mm in the x direction and 0.7 mm in the z direction. With the rotation time used in this study, motions up to 2.7 Hz can be reliably detected. The reconstruction algorithm fills volume gaps with noisy data using interpolation, but objects within these gaps remain hidden.\ud \ud Conclusions: This study gives insight into the possibilities and limitations for measuring small motions using ECG-gated CT. Application of the experimental method is not restricted to the CT scanner of a single manufacturer. From the results, they conclude that ECG-gated CTA is a suitable technique for studying the expected motions of the stent graft and vessel wall in AAA.\u

    Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data

    Get PDF
    BACKGROUND: The European Platform on Rare Disease Registration (EU RD Platform) aims to address the fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-coordinating registries, by establishing standards for integration and interoperability. The first practical output of this effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries. Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics. Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles. RESULTS: Through a team-based iterative approach, we created semantically grounded models to represent each of the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data without requiring site-specific coding nor expertise in Linked Data or FAIR. CONCLUSIONS: Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches that were already familiar to them
    corecore