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ABSTRACT: Nitric oxide (NO) is a highly potent but short-lived Metallic wires

endogenous radical with a wide spectrum of physiological activities. In this RK
work, we developed an enzymatic approach to the site-specific synthesis of XX

NO mediated by biocatalytic surface coatings. Multilayered polyelectrolyte
films were optimized as host compartments for the immobilized p-
galactosidase (f-Gal) enzyme through a screen of eight polycations and
eight polyanions. The lead composition was used to achieve localized
production of NO through the addition of f-Gal-NONOate, a prodrug that
releases NO following enzymatic bioconversion. The resulting coatings
afforded physiologically relevant flux of NO matching that of the healthy
human endothelium. The antiproliferative effect due to the synthesized NO
in cell culture was site-specific: within a multiwell dish with freely shared
media and nutrients, a 10-fold inhibition of cell growth was achieved on top
of the biocatalytic coatings compared to the immediately adjacent enzyme-
free microwells. The physiological effect of NO produced via the enzyme prodrug therapy was validated ex vivo in isolated
arteries through the measurement of vasodilation. Biocatalytic coatings were deposited on wires produced using alloys used in
clinical practice and successfully mediated a NONOate concentration-dependent vasodilation in the small arteries of rats. The
results of this study present an exciting opportunity to manufacture implantable biomaterials with physiological responses
controlled to the desired level for personalized treatment.
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B INTRODUCTION

Nitric oxide (NO) is a molecule with an incredibly broad
spectrum of physiological activity.'~* This small but a highly
potent molecule is implicated in the progression of and
therapies for inflammation,” cancer,® and viral pathologies,7
among others. It was dubbed the “guardian of cardiovascular
grafts”® because of its proproliferative activity on the
endothelium as well as antiadhesion and antiaggregation
signaling to platelets in the circulating blood. Being a radical
species, the lifetime of NO in human blood is very short—
approximately 1 s, over which time it has the capacity to rapidly
diffuse over a distance of approximately 100 pm, which is the
length scale of the adjacent interacting cells. Because of the
important biological functions of NO and its highly tissue-
specific activity, strategies for site-specific delivery of this
molecule for human therapy are highly desirable.””"® Current

their own right, these methods are limited in their capacity to
(a) engineer a constant, zero-order release of NO, (b) engineer
NO depots into the existing biomaterials used for vascular
tissue engineering, and (c) control the dosage of the drug
within the biomaterial.”'" The latter aspect is particularly
important in that controlling the drug feed upon implantation
of a therapeutic device is the necessary step toward
personalized medical care such that the drug levels can be
tuned to a desired level established individually for each patient.

Inspired by nature, we hypothesized that localized synthesis
is the most appropriate approach toward the generation and
site-specific delivery of controlled amounts of NO. We envision
that this can be accomplished with the use of substrate-
mediated enzyme prodrug therapy (SMEPT)."' In our past
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methods for the site-specific delivery of NO rely on the release
of the drug from its adduct depots.”'® Although powerful in
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studies, we engineered biocatalytic (enzyme-containing) h?rdro-
gel matrices'”"® and multilayered polymer coatings'”" to
illustrate the fundamental advantages of SMEPT over the
conventional implant-mediated drug delivery. Sgeciﬁcally,
SMEPT affords an on-demand drug delivery’> because
localized drug synthesis relies on externally administered
benign prodrugs. The same biomaterial can be tuned to release
the desired amount of the drug in unit time simply through the
choice of concentration of the administered prodrug.'” Using
SMEPT, the same biomaterial is capable of synthesizing a range
of therapeutic molecules at their nominated concentration and
time of administration—taken individually, in sequence, or in
combination.'® Within the lifetime of the enzyme, drug release
is sustained and follows a highly beneficial zero-order, linear
release pattern.'* These features make SMEPT well-suited to
accomplish the localized synthesis needed to deliver NO.

Several research groups have recently and independently
developed SMEPT-like systems for localized synthesis of NO.
The original report from Cha and Meyerhoff revealed that
selenium-containing organic compounds mimic selenium-
containing enzyme, glutathione peroxidase, and efficiently
mediate the release of NO from S-nitrosothiols (RSNO).'
On the basis of this finding, several groups have performed
substrate-mediated synthesis of NO achieved by the
biomaterials that are surface-modified with selenocystamine
and/or diselenodipropionic acid'”'® and organotellurium
compounds.'” These systems produced highly favorable results
upon in vivo validation and provided inspiration for a broader
development of this approach. An impressive achievement was
reported by Yang et al,”” whereby NO was generated using
endogenous donors of NO (natural RSNO), thus avoiding
reliance on the external administration of prodrugs.

Being highly important in their own right, enzyme mimics
are limited in that, as described, these catalysts can only
mediate the synthesis of NO, that is, they are only suited to
mediate a monotherapy. In contrast, natural enzymes are
capable of converting a wide range of substrates, and within the
same family of prodrugs (e.g.,, glucuronides, phosphates), one
enzyme performs bioconversion to synthesize multiple drugs—
providing for the flexibility of drug choice and to mediate
combination therapy, as is highly desired for a range of drug
delivery applications.'” Of the enzymes that are typically used
for enzyme—prodrug therapies,”" only f-galactosidase (j3-Gal)
has a readily available corresponding prodrug for the synthesis
of NO, namely, ﬂ-Gal—NONOate.2 >3 On the basis of the
above discussion, we chose f-Gal as the enzyme and B-Gal—
NONOate as the prodrug.

The overall goal of the work presented herein is to engineer
SMEPT onto the surface of the metallic substrates used for the
production of diverse medicinal implants such as to achieve an
enzyme-mediated localized synthesis of NO. To engineer
SMEPT onto the surface of the metallic wires, we used the
sequential polymer deposition technique (also known as “layer-
by-layer” deposition, LbL) to form biocatalytic f-Gal-
containing multilayered films (Figure 1). The prime advantage
of this surface modification method is that it is an all-aqueous,
solution-based approach. This technique accommodates
modification of any substrate with no restriction on surface
geometry and topography. Multilayered thin films have
previously been deposited onto the surface of cardiovascular
stents for surface-mediated gene delivery.”* For the production
of NO, multilayered films have previously been assembled to
contain arginine, a natural precursor for the synthesis of NO by

v AY
-gal-NONOate 1
1

©®

3n o
n x
v v O

Biocatalytic metallic wires releasing NO

Figure 1. Enzymatic synthesis of NO is engineered in this work into
multilayered polyelectrolyte coatings. When used as substrates for cell
culture, these biocatalytic coatings provide localized synthesis of NO
for localized delivery to the adhering cells.

NO synthase,”” and to contain selenium-based enzyme
mimics.”® However, to our knowledge, there are no prior
reports of multilayered thin films for the enzyme-mediated
synthesis of NO. A prime consideration for the biocatalytic
performance of such coatings is the choice of the polyelec-
trolyte pair used to assemble the multilayered thin film. The
existing examples of enzyme-containing LbL films”’ do not
provide predictive power to nominate an optimal coating for
the catalytic output of the immobilized enzyme. Therefore, the
first objective of this work was to conduct a broad screen of
polyelectrolyte multilayered coatings, focusing on the catalytic
output of the film as a criterion of selection. The second
objective of this work was to establish control over the
synthesis of NO by the biocatalytic coatings and to validate if a
surface-mediated approach to the delivery of NO is site-specific.
Finally, the ultimate goal of this study was to provide
biomedical characterization of the physiological activity of
NO as produced via localized enzymatic biocatalytic con-
version. We envisioned that an ex vivo wire myograph model
presents a favorable setting for this test, in that it uses
mammalian tissue and records native physiological responses
and it is readily suitable for the systematic variation of
experimental conditions (such as recording dose—response
curves). In doing so, ex vivo tissue-based studies minimize the
use of laboratory animals, yet provide the sought-after
validation of physiological effects mediated by implantable
biomaterials.

B MATERIALS AND METHODS

Materials and Instruments. Unless stated otherwise, all materials
were purchased from Sigma-Aldrich. Pyrogallol and the enzyme f-Gal
(derived from Escherichia coli, 465 kDa) were purchased from Merck,
NO gas was obtained from Air Liquide Danmark AS, and f-Gal—
NONOate was obtained from Cayman Chemical. Fluorescein
diacetate (FDA) and propidium iodide (PI) were used as live/dead
stains. PrestoBlue cell viability reagent and Quant-iT PicoGreen
dsDNA assay kit were both obtained from Life Technologies. Round
metal wires with a 200 ym diameter (alloys 35N LT, 316L, and L60S)
were manufactured by Fort Wayne Metals and processed as reported
elsewhere.”®
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Quartz crystal microbalance (QCM) experiments were conducted
on QSense E4 (Biolin Scientific). Quantitative absorbance and
fluorescence measurements were conducted using an EnSpire
PerkinElmer multilabel plate reader and a Tecan infinite M200 PRO
multimode reader. Imaging was performed on a Zeiss Axio Observer
Z1 microscope. Ultrapure water (MQ) with a resistivity of 18.2 MQ
cm™" obtained from a Milli Q direct 8 system (Millipore) was used for
all solutions.

Atomic force microscopy (AFM) characterization of the samples
was carried out in a tapping mode (MultiMode VIII, Bruker, USA). A
cantilever (ScanAsyst-Air, Bruker, USA) with a sharp tip (nominal tip
height 2.5-8 ym and nominal tip radius 2 nm) and triangular
geometry (nominal resonant frequency 70 kHz, spring constant 0.4 N/
m, length 115 pm, and width 25 um) was used to conduct the
experiment. Operational parameters such as tapping amplitude and
gains were adjusted to optimize the resolution and prevent the tip—
sample damage. The scan rate was set to 1 Hz. The AFM experiment
was conducted in air at 21 °C and 54% humidity. Raw data were
processed using open-source software Gwyddion for tilt correction and
adequate polynomial leveling. To calculate the root-mean-square
(rms) roughness, images were acquired from five different locations at
various scan sizes.

Polymers used in this work were poly(ethyleneimine) (PEIL ~25
000 Da, branched), poly(sodium-4-styrene sulfonate) (PSS, ~70 000
Da), poly(methacrylic acid) (PMA, ~18 500 Da), poly(acrylic acid)
(PAA, ~28 300 Da), dextran sulfate (200 000 Da), chrondoitin sulfate
(5—100 kDa), hyaluronic acid (HA, low: 15000—30000 Da, high:
1.5—1.8 X 10° Da), alginate (ALG, 12 000—40 000 Da), DNA (from
herring testes), poly(diallyldimethylammonium chloride) (100 000—
200000 Da), poly-L-lysine (30000—70000 Da), poly-L-arginine
hydrochloride (PLA, 15000—70000 Da), poly-L-histidine (PLH,
5000—25000 Da), poly(allylamine hydrochloride) (PAH, ~15000
and 17 500 Da), chitosan (Chi, 190 000—310 000 Da), biodegradable
polyamidoester”” (~8300 Da), and protamine sulfate (PRT, ~5100
Da). Phosphate-buffered saline (PBS) and 4-(2-hydroxyethyl)-
piperazine-1-ethane-sulfonic acid (HEPES) of 10 mM containing
150 mM NaCl in MQ with pH 7.4 were used as buffers.

Polymer Screen. For the assembly of polyelectrolyte multilayered
coatings, the polymers were dissolved in PBS to 0.1 g/L. Chi was
dissolved in acetic acid to 10 g/L and diluted in PBS to 0.1 g/L,
whereas PLA and PLH were dissolved in 0.1 M HCI to 10 g/L and
diluted to 0.1 g/L with PBS. All multilayered films were fabricated in
standard tissue culture polystyrene (TCPS) 96-well plates, unless
stated otherwise. To ensure film buildup, a primary layer of PEI was
applied, followed by the alternating layers of polyanions and
polycations (100 uL per well). Bach layer was left to adsorb for §
min, followed by a washing step two times with MQ. The enzyme j-
Gal was added at a concentration of 20 mg/L (100 uL), unless stated
otherwise, and allowed to incubate for 1 h prior to a single washing
step. Additional film buildup was performed as described above,
resulting in a final architecture of PEI—(polyanion/polycation);—f-
Gal—(polycation/polyanion), ;. For quantitative evaluations, fluoro-
genic prodrug resorufin galactopyranoside was added together with
fresh media yielding S mg/L and allowed to incubate for 30 min prior
to readout.

Film Assembly Using PSS/PAH. The multilayered films of PSS
and PAH were prepared with the polymers dissolved in HEPES buffer
to a concentration of 0.1 g/L. To ensure film buildup, a primary layer
of PEI was applied, followed by the alternating layers of PSS and PAH,
as described previously. The resulting multilayered films had the final
architecture of PEI—(PSS/PAH);—f-Gal—(PAH/PSS), ;. The multi-
layered films were then incubated in a 100 uL HEPES buffer at 4 °C
until usage.

Multilayer Film Assembly on Metal Wires. The films deposited
on metal wires consisted of the polymers PEI/PSS/PAH dissolved in
PBS to a concentration of 1 g/L. PEI was dissolved in MQ_water and
left to adsorb for 30 min, all PSS/PAH layers were left to adsorb for 10
min, and the enzyme f-Gal was allowed to incubate for 2 h. Prior to
film assembly, the wires were cleaned by consecutive immersions in 20
w/v % citric acid, demineralized water, and 70% ethanol using

sonication. The resulting multilayered films had the final architecture
of PEI-(PSS/PAH);—f-Gal—(PAH/PSS),s. The durability of the
enzyme activity deposited onto the wires was evaluated after 7, 14, 21,
and 28 days of incubation in PBS at 37 °C using resorufin-$--
galactopyranoside at a concentration of § mg/L, which was allowed to
incubate for 30 min prior to readout.

Quantification of NO. Deoxygenated water was prepared using
argon gas. The latter was first led through a vial containing 10 mM
pyrogallol (to remove traces of oxygen) and then bubbled through
water for 1 h to undergo deoxygenation. NO gas was led through 10
mM NaOH in water to remove traces of higher nitrogen oxides and
then through deoxygenated water to prepare a saturated solution of
NO (with a concentration of 2 mM, ref 30). Serial dilutions of NO
were then made using deoxygenated water using a gastight Hamilton
syringe. The solutions of NO were mixed with DAF-FM in a black 96-
well plate to the final concentration of the dye of 8 M. The
fluorescence of the solutions was recorded for 40 min (at A.,/A, 495/
515 nm) during which time the fluorescence readings reached a
constant level. The final attained values of fluorescence were used to
plot the fluorescence intensity versus NO concentration calibration curve,
which resulted in a linear fit with the rms correlation coefficient of
0.92. The multilayered PSS/PAH coatings containing $-Gal were
assembled in the wells of the black 96-well plates as described above.
The wells were filled with fresh physiological saline solution containing
8 uM DAF-FM and varied concentrations of #-Gal-NONOate (S, 10,
15, and 20 #M). The fluorescence of the solutions was recorded over
30 min on a plate reader (Ae/Aem 495/515 nm). All experiments were
carried out thrice in triplicates.

Cell Culture. The mouse myoblast cell line C2C12 was cultured in
Dulbecco’s modified Eagle medium supplemented with 10 v/v % fetal
bovine serum, 1 v/v % penicillin—streptomycin, and 1 mM sodium
pyruvate. A 1/10 cell splitting was performed before reaching 70—80%
confluence.

Myoblasts on Multilayered Coatings. The multilayered films
produced as described above with an architecture of PEI-(PSS/
PAH);—f-Gal—(PAH/PSS), ; were UV-sterilized for 10 min prior to
cell seeding. C2C12 myoblasts were seeded out at a starting density of
500 cells per well in 100 L media and allowed to adhere overnight.
NONOate (100—0 uM) was added together with fresh media, and the
cells were left to incubate for 24 h at 37 °C and 5% CO,. For
incubation of 48 and 72 h, the cells were administered fresh media
with the respective (pro)drug every 24 h. The viability of the C2C12
myoblasts was evaluated using the PrestoBlue viability reagent,
whereas quantitative DNA measurements were performed with
Quant-iT PicoGreen.

Cell Imaging. C2C12 myoblasts were seeded out in 12-well tissue
culture plates on 16 mm glass slides coated with multilayered films
with or without the enzyme. The initial cell seeding density was 5000
cells per well in 1 mL media. Cells were allowed to adhere overnight,
followed by the addition of 100 kM NONOate in fresh media. The
samples were incubated for 24, 48, and 72 h, with fresh media and
NONOate added every 24 h. Fresh media containing the LIVE/DEAD
stains of FDA (S mg/L) and PI (4 mg/L) were added to the samples
and incubated for 5 min in the dark. After 2X washing with PBS, the
cells were visualized.

Local Delivery Using Coculture p-Slides. For the demon-
stration of local delivery, myoblast cells were seeded out into coculture
u-slides allowing nine individual subcultures in one major well (Ibidi
GmbH). The designated wells were precoated with biocatalytic
coatings as described above. The starting density of the cell was 700
cells in 50 yL media per minor well. The cells were allowed to adhere
for 3—4 h before replenishing with 1 mL fresh media and incubated
overnight. 100 uM solution of NONOate was subsequently
administered in fresh media and replenished after 24 h. After a total
of 48 h of incubation with NONOate, the samples were evaluated
using LIVE/DEAD stain as described.

Ex Vivo Wire Myograph Study. Ethics Statement. All animal
experiments in this study were approved by the Danish Animal
Experiments Inspectorate (permission 2011/561-2011), and recom-
mendations described in the Guide for the Care and Use of Laboratory
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Figure 2. Chemical structure and abbreviations of polyanions and polycations used in this study (DNA and PRT not shown).

Animals of the U.S. National Institutes of Health and the ARRIVE
Guidelines were followed. Animals were housed in the animal facility
in Universal Euro III type long with cages with standard wood bedding
and space for two rats. There was a 12 h shift between light and
darkness, and the animals had free access to food and drinking water.

Tissue. Male Wistar rats (9—11 weeks) with a weight of
approximately 450—S550 g were euthanized by cervical dislocation
followed by exsanguination. The mesenteric bed was removed and
placed in cold physiological saline solution (4.7 mM KCl, 1.17 mM
MgSO,-7H,0, 119 mM NaCl, 25 mM NaHCO;, 1.18 mM KH,PO,,
0.026 mM ethylenediaminetetraacetic acid, 5.5 mM glucose, and 1.6
mM CaCl,). The first or second branch arteries with a diameter of
around 300—450 pm were dissected using microforceps (Dumont no.
5) and a microsurgery scissor.

Mounting and Normalization. Arteries with a length of 1.5-2 mm
were mounted on a dual wire myograph (model 410 A, Danish Myo
Technology A/S, Denmark) using a 40 pm steel wire and cold
physiological saline solution. The arteries were left to equilibrate at 37
°C while bubbled with a biocair (21% O,, 5% CO,, and 74% N,). To
ensure comparable results, the arteries were normalized to an internal
circumference corresponding to 90% of the internal circumference of a
fully relaxed artery at a transmural pressure of 100 mmHg.
Norepinephrine (NE) was used for contraction of the small
mesenteric arteries. Iberiotoxin (IbTX) and 1H-[1,2,4]oxa-diazolo-
[4,3-a]quinoxalin-1-one (ODQ), both from Tocris Bioscience, were
used as inhibitors of the NO-mediated vasodilation.

Experimental Protocol. Before experimentation, the viability of the
smooth muscle cells (SMCs) was tested by contracting with 10 yM
NE. Only the arteries with a contraction corresponding to a transmural
pressure above 75 mmHg were included in these studies. Stent wires
with a diameter of 100 ym and a length of 9 mm were placed in the
lumen of the arteries before testing the viability of the SMCs. To
investigate if the prodrug NONOate could produce NO in the
presence of the LbL-coated wire, the arteries were contracted with 3
#M NE, and when stabilized, NONOate was added in a cumulative
manner to produce a concentration—response curve (CRC) ranging
from 0.5 nM to 15 M. The arteries were discarded if they developed a
contraction of less than 60% of the maximum contraction.
Furthermore, controls were made both with and without the presence
of the uncoated wire. For inhibition studies, the arteries were
incubated for 30 min with 3 yM ODQ and 0.1 uM IbTX before
adding NONOate, as described above.

Data Analysis. Unless stated otherwise, the numerical data are
presented as mean + SD and calculated based on at least three
independent experiments. All the data were analyzed using Microsoft
Excel 2010 and plotted in OriginPro 8 or GraphPad Prism 7. Ex vivo

10744

wire myograph data were collected by the LabChart S software
program (ADInstruments Ltd, Oxfordshire, UK), presented as mean =+
SEM, and calculated based on at least five experiments. The statistics
were conducted using Student’s t-test or one-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparison test in Excel or
GraphPad Prism 7. For the myograph experiments, two-way ANOVA
was used. Statistical significance was defined as P < 0.0 (*), P < 0.01
(**), and P < 0.001 (*%%),

B RESULTS AND DISCUSSION

The optimization of the architecture of the multilayered
polyelectrolyte films was conducted toward selection of
compositions that favored high catalytic output of the coating.
A total of eight polyanions and eight polycations (Figure 2)
were used to assemble the multilayered thin films in the wells of
the standard 96-well plates. Polyelectrolyte assembly at the
interface may proceed “linearly” and afford relatively dense
coatings (e.g., PSS/PAH, refs 31 and 32) or “exponentially” and
afford hydrogel-like films (HA- and ALG-containing films and
polypeptide-containing films, ref 33). For polymers with pH-
dependent ionization (e.g, PAA, PMA, and PAH), the
thickness and density will also depend on the coating assembly
conditions.** Furthermore, the polymers differ in their capacity
to support protein adsorption,” and it is also important that
the enzyme is not displaced upon the deposition of subsequent
polymer layers. These combined effects define the catalytic
performance of the assembled coating. Although in-depth
analysis of these factors individually fell beyond the scope of
this study, we aimed to identify the composition(s) that satisfy
each of these conditions and in doing so afford the coatings
suitable for subsequent applications in SMEPT.

Multilayered polyelectrolyte coatings were assembled,
starting with a priming layer of PEI followed by a total of
five polyelectrolyte bilayers. Enzyme immobilization was
conducted through the exposure of the three bilayer coatings
(with a polycation surface layer) followed by the subsequent
deposition of 2.5 more bilayers (polyanion top layer). The
resulting coatings were evaluated in terms of their catalytic
output using the fluorogenic galactosidase substrate, resorufin
p-p-galactopyranoside. To probe the spontaneous release of the
protein from the coatings, bioconversion was also tested in the

DOI: 10.1021/acsami.8b01658
ACS Appl. Mater. Interfaces 2018, 10, 10741—-10751


http://dx.doi.org/10.1021/acsami.8b01658

ACS Applied Materials & Interfaces

Research Article

supernatants aspirated from the coatings immediately prior to
the evaluation of the coating.

The prime conclusion from this screen is that the overall
majority of coatings supported well the activity of the
immobilized f-Gal (Figure 3). Linearly growing multilayers
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Figure 3. Results of quantification of the catalytic output for the
multilayered coatings composed of different polyanion/polycation
combinations and equipped with -Gal: (A) multilayered coatings with
PAH or Chi as polycations and a variation of polyanions; (B)
multilayers with PSS or HA as polyanions and a variation of
polycations. HA with high and low molar mass is denoted as HA" and
HA", respectively. Enzymatic catalysis was evaluated using a
fluorogenic enzyme substrate, resorufin f-p-galactopyranoside.

based on synthetic polyelectrolytes (e.g,, PSS/PAH)*"** were
active, rather similar to the exponentially growing coatings
based on polysaccharides,” revealing that the density of the
coating may not be decisive for the activity of the immobilized
enzyme. This includes coatings based on polype;)tldes with the
potential to make gradually degradable coatings™ and coatings
based on nondegradable polymers such as to assemble
permanent material surface modification.”” With a view toward
long-lasting coatings, subsequent work relied on the PSS/PAH
multilayers.

We quantified the buildup of these multilayers and more
importantly the amount of the enzyme immobilized within the
coating. The analyses were performed using QCM (Figure 4A).
This experiment revealed that under chosen conditions (20
mg/L enzyme concentration in HEPES buffer, pH 7.4),
enzyme immobilization proceeds rather fast and is complete
within minutes affording a protein coverage of 198 + 20 ng/
cm®. This enzyme coverage is within the same order of
magnitude as what has previously been reported for PSS/PAH

and immobilization of immunoglobulin®® or albumin® and
adsorption of other proteins onto the multilayered polyelec-
trolyte surface coatings.’ The resulting multilayered coatings
were imaged using AFM (Figure 4B), illustrating a typical
morphology of LbL coatings and an rms roughness of 5 + 2 nm
also typical for these coatings."’

Next, we aimed to characterize the coatings in detail in terms
of their biocatalytic output and specifically in the production of
NO. To achieve this, we established a fluorescence-based
readout to quantify the production of NO. DAF-FM is a dye
that reacts with NO and upon doing so becomes fluorescent.
Because of this property, it has been previously used to, for
example, visualize the delivery of NO to cells.”' The calibration
curve for fluorescence versus concentration of NO was
obtained using NO gas and serial dilution of its saturated
solution (2 mM, ref 30) in deoxygenated water. This
experiment afforded a linear calibration curve correlating
fluorescence of DAF-FM and feed of NO in solution, thus
providing a facile method to quantify the production of NO by
the biocatalytic coatings (for details, see Materials and
Methods).

To quantify the production of NO using biocatalytic
coatings, the latter were prepared as discussed above in the
wells of black 96-well plates and incubated with the f-Gal—
NONOate prodrug in the presence of DAF-FM. The
fluorescence of the solutions was continuously recorded on a
plate reader (Figure SA). These data demonstrate that in the
absence of #-Gal in the surface coatings, no production of NO
was observed. In contrast, enzyme-containing coatings afforded
a steady evolution of fluorescence, that is, steady production of
NO over at least 30 min. The values of fluorescence intensity
were then converted into the concentrations of NO and NO
flux, that is, the rate of production of NO by the biocatalytic
surface coatings in unit time (Figure SB). This analysis affords a
highly important conclusion that under SMEPT conditions, the
assembled coatings afford a flux of NO, which matches with
that regorted for healthy endothelium (0.05—0.4 nmol min™"

cm™2).***} Furthermore, prodrug concentration is a facile tool
to fine-tune NO flux to the desired level, a unique opportunity
for personalized medicine.

From a different perspective, we hypothesized that NO flux
can also be optimized through the variation of the conditions of
assembly of biocatalytic coatings, leading to a variation of
enzyme content in the multilayered polyelectrolyte film. To test
this, PSS/PAH coatings were assembled as discussed above,
except that the enzyme immobilization step was performed
using protein solutions with varied concentrations. QCM
measurements revealed that with 20 mg/L feed, the enzyme
surface immobilization was 2.0 + 0.2 mg/m? (Figure 4). With a
decreased enzyme feed, the surface immobilization decreased
accordingly, and at 2 mg/L, the feed was 0.38 + 0.12 mg/mz,
and at 0.2 mg/L, the feed was 0.10 + 0.04 mg/mz. The
resulting biocatalytic coatings were incubated with S-Gal—
NONOate in the presence of DAF-FM with continuous
recording of the fluorescence of the solution. With an excess
prodrug, the biocatalytic production affords a highly desired
linear profile of the evolution of fluorescence (Figure 6A).
Furthermore, variation of the enzyme feed in the assembly
solution affords a facile means of control over the biocatalytic
output of the coating in a wide range of physiologically relevant
flux of NO (Figure 6B). Over several days of analysis,
assembled coatings revealed a minor decrease in the biocatalytic
performance, indicating loss of enzyme activity; however, NO
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Figure 4. (A) QCM monitoring of the assembly of multilayered surface coatings based on PSS and PAH (PEI priming layer) and immobilization of
f-Gal. Quantification of protein coverage is based on three independent experiments. For experimental details, see the Materials and Methods. (B)
AFM image of the PSS/PAH coating with immobilized -Gal. Scale bars: 300 nm (black, XY dimension) and 0—6 nm (Z-direction).
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Figure S. (A) Kinetic curves illustrating the evolution of fluorescence
resulting from the biocatalytic production of NO by the multilayered
surface coatings at varied concentrations of f-Gal-NONOate and
subsequent conversion of DAF-FM into its fluorescent product. (B)
Flux of NO afforded by the biocatalytic surface coatings at varied
concentrations of f-Gal-NONOate (calculated from the linear part of
the data curves in panel (A)).

flux remained well within the physiologically relevant range****

(Figure 6C).

Initial cell culture characterization of the biocatalytic coatings
was carried out using myoblast cells. In the context of
atherosclerosis and cardiovascular stenting, the proliferation
of muscle cells is a highly undesirable event that can lead to the
restenosis cascade.” Current stents on the market are designed
to gradually release cytotoxins such as paclitaxel specifically to
prevent proliferation of muscle cells.”* NO in high concen-
trations is also known to elicit an antiproliferative activity on
muscle cells,** providing a convenient reporter system for the
initial evaluation of surface coatings, releasing controlled
quantities of NO. Multilayered surface coatings were assembled
within the wells of the standard 96-well cell culture plate.
Myoblasts were seeded and cultured directly on top of the
coatings over 72 h. To quantify cell growth, two assays were
performed, namely, viability screen using the standard
commercially available viability kit (PrestoBlue) as well as
direct quantification of DNA, the latter being proportional to
the number of cells in the well. The effects of NO were
quantified at 24, 48, and 72 h time points (Figure 7). Thin films
prepared using 0.2 mg/L enzyme feed solution revealed no
change in cell proliferation—readily explained by the low levels
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Figure 6. (A) Kinetic curves illustrating the evolution of fluorescence resulting from the reaction of DAF-FM with NO produced by the biocatalytic
surface coatings. Coatings were assembled using enzyme feed solutions, with the protein content from 0.2 to 20 mg/L; 100 uM S-Gal-NONOate.
(B) NO flux sustained by the biocatalytic coatings (calculated from the linear part of the curves in panel (A)). (C) NO flux sustained by the
biocatalytic surface coatings assembled using 20 mg/L enzyme feed solution in the presence of 100 uM f-Gal-NONOate as measured at the time

points from 1 to 4 days.
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Figure 7. Cell number and viability for myoblasts cultured on the PSS/PAH multilayered polyelectrolyte films over 24, 48, and 72 h. Multilayered
films were equipped with the $-Gal enzyme with the feed protein content of 0, 0.2, 2, and 20 mg/L. Cell culture was performed in the presence of
100 uM NONOate. Results are presented as means = SD for at least three independent experiments.

of generated NO. In contrast, higher enzyme content (2 and 20
mg/ L) in the thin films endowed the coatings with a high level
of biocatalytic activity, and at each time point, the surface
coatings provided effective antiproliferative activity. Evaluation
of cell growth through quantification of DNA proved to be a
more sensitive readout, and even at 24 h of incubation, the
decrease in cell numbers was statistically significant. Incubation
of cells on biocatalytic films in the presence of the NONOate
for 48 h suppressed the proliferation of myoblasts eftectively to
zero. Quantitative data were well-supported by the microscopic
visualization of adhered cells (Figure 8). The images illustrate

+ B-Gal -Gal

24 h

48 h

72 h

Figure 8. Fluorescence microscopy images of myoblast cells
proliferating on the multilayered polyelectrolyte coatings in the
presence of 100 uM NONOate over 72 h of cell culture either with or
without $-Gal incorporated into the polymer film. Scale bar: 50 pm.

that in the absence of the enzyme, cells proliferate and increase
in number over time. The cell stain used herein, nonfluorescent
FDA, is converted by the intracellular esterases into its highly
fluorescent product, fluorescein, which highlights that the cells
are metabolically active and proliferating. In contrast, the
presence of the enzyme in the multilayered surface coating
resulted in a negligible proliferation of cells. These results

illustrate that localized generation of NO is a highly effective
method to control the proliferation of adhering myoblasts.
We next aimed to investigate if the localized synthesis of NO
via enzymatic conversion of prodrugs achieves the highly
sought-after site-specific effect of drug delivery. The main
aspect contributing to this highly advantageous prospect is the
short lifetime of the generated NO in serum. Site-specific drug
delivery was investigated using multiwell coculture slides
(Figure 9A). Each of the two major wells is separated into
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Figure 9. (A) Schematic representation of coculture y-slides indicating
the multilayered-coated wells. (B) Fluorescence microscopy imaging
of myoblast cells. Selected wells were coated with biocatalytic
multilayers with 20 mg/L $-Gal for local delivery of NO. Cells were
incubated for 48 h in the presence of 100 M NONOate, replenished
at 24 h. Scale bar: 100 ym. (C) Averaged cell count of coated vs
noncoated wells. Results are presented as mean + SD for at least three
independent experiments. ***P < 0.001.

nine minor wells, allowing individual cell cultures to be
established in each minor well. This allowed us to assemble
individually designed multilayered polyelectrolyte coatings such
that only the nominated minor wells contained the immobilized
enzyme (denoted with “E”). Upon cell attachment, cell culture
medium was added to cover the entire major well such that the
nutrients, the prodrugs, and the newly synthesized drugs are
shared among the minor wells. Myoblasts were cultured in the
presence of 100 M NONOate for 48 h with the replenishment
of the media and the prodrug at 24 h. The resulting cultures
were imaged using fluorescence microscopy (Figure 9B), and
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the cell density was quantified through a direct cell count
(Figure 9C). The microscopy images demonstrate a clear
negative correlation between the presence of the enzyme in the
underlying surface coating and the resulting cell density in the
minor well—attributable to the localized enzymatic production
of NO. This conclusion is supported by the cell count that
illustrates a statistically significant, almost 10-fold decrease in
the number of cells in the minor wells with the immobilized
enzyme. Despite the cell culture medium being shared among
the nine minor wells, the therapeutic effect due to the
synthesized NO is only observed locally in the well where
NO is produced. This provides a direct evidence of the site-
specific nature of this mode of delivery of NO.

Encouraged by the successful design and implementation of
the localized synthesis of NO on model substrates, biocatalytic
coatings were engineered on the surface of metallic wires
produced industrially for the manufacturing of cardiovascular
stents and other implantable biomaterials. Three corrosion-
resistant alloys commonly used in clinical practice (316L, 35N
LT, and L605) were used as substrates to assemble the
polyelectrolyte multilayered coatings containing $-Gal enzyme.
The wire samples were identical dimensionally, such that
individual specimens had closely matched surface area. The
wires with deposited multilayered coatings were first used to
evaluate the resulting biocatalytic output, that is, ascertain
enzymatic catalysis mediated by the coated wires. We note that
in our preliminary experiments, we observed that the assembly
conditions used for planar substrates did not afford sufficient
buildup of the material on the wires (as evidenced by the low
enzymatic output of the modified wire). We therefore
optimized the assembly conditions to maximize the deposited
quantities for the polymers and the protein for details, see
Materials and Methods). The resulting biocatalytic coatings on
the three alloys were nearly identical in their performance in
converting the fluorogenic substrate into its fluorescent product
(Figure 10). However, to much surprise, the alloy composition
had a significant impact on the rate of deactivation of the
enzyme within the coating. Thus, 316L alloy appears to
deactivate the enzyme quickly, and at day seven measurement,
the enzymatic activity of the biocatalytic coating was hardly
detectable. Although the origin of this deactivation is not fully
clear, a possible cause of this may be that the 316L alloy
contains copper; the latter is a known inhibitor of f-Gal.*® In
contrast, when deposited on the wires based on 35N LT and
L60S5 alloys, the biocatalytic coatings were rather stable in terms
of their enzymatic performance, revealing a half-life of the
enzyme of ca. 7 days. Following 2 weeks of incubation in a
physiological buffer at 37 °C, these implantable biomaterials
revealed at least 20% of the initial enzymatic activity. We are
now working toward optimization of the enzyme-containing
coatings to extend the lifetime of the enzyme.

The two alloys that supported the enzymatic activity over
extended times were then used in an ex vivo physiological
activity validation study. Specifically, we used a wire myograph
technique to quantify the vasodilation in rat mesenteric arteries.
Vasodilation is among the most important and the most well-
characterized physiological effects of NO.*” Of high impor-
tance, specific inhibitors of NO signaling pathways such as
ODQ and IbTX allowed us to confirm that the experimentally
observed effects are indeed due to the released NO and not due
to the offsite effects (vasodilation because of the tissue cell

death).

@ 35N LT L605

bare coated bare coated
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Enzymatic activity, a.u.
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Figure 10. (A) Scanning electron microscopy images of the 3SN LT
and L60S wires in pristine form (bare) and after the assembly of a
biocatalytic coating; scale bars: 100 ym. (B) Enzymatic activity of the
multilayered polyelectrolyte coatings containing $-Gal and assembled
on the corrosion-resistant alloys (3SN LT, L60S, 316L) during
incubation in PBS at 37 °C over 28 days. Statistical evaluation was
performed to compare the enzymatic activity of the coated wires with
the background fluorescence of a metal without the enzyme, calculated
via a two-way ANOVA, followed by Tukey’s multiple comparison test.

The samples of wires based on 35N LT and L60S were
coated with the biocatalytic multilayered polyelectrolyte film
and inserted into the artery mounted in the myograph and
covered with a physiological saline solution. Vasoconstriction
was achieved through the addition of NE, following which
increasing concentrations of the NONOate were added to the
bath. As expected, NONOate revealed only a minor vaso-
dilation activity, likely because of the spontaneous, non-
enzymatic degradation of the prodrug (Figure 11, top row).
Pristine metallic wires mediated no prodrug conversion, as
evidenced by a negligible decrease in the vascular contraction
force at all doses of the NONOate. In contrast, addition of
NONOate to the biocatalytic wires resulted in a pronounced,
concentration-dependent decrease in contraction, illustrating a
physiological effect of the NO produced via SMEPT. The
NONOate vasodilation was abolished in the presence of
inhibitors of NO-induced signaling pathways, soluble guanylate
cyclase, and large conductance calcium-activated K channels by
ODQ and IbTX. These findings confirm the specificity of the
physiological response because of the release of NO. The dose
response curves for the NONOate (Figure 11, bottom) reveal
that vasodilation was registered at NONOate concentrations
significantly (100- to 1000-fold) lower than the toxicity
discussed above toward cell proliferation and using the 35N
LT wires. Thus, statistically significant relaxation was achieved
at nanomolar concentrations of the prodrug. This experiment
also explicitly illustrates the highly advantageous opportunity
associated with SMEPT in that the adjustment of the
physiological effect in a mammalian tissue was achieved using
the same implantable biomaterial via the choice of the
concentration of NONOate. In other words, the same
biomaterial can be instructed externally such as to achieve
personalized, fine-tuned therapeutic or physiological re-
sponse—an opportunity not available with the stents and the
overall majority of implants on the market today.
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Figure 11. Ex vivo wire myograph quantification of the contraction force exerted ex vivo by the rat mesenteric arteries (A,B) and calculated degree of
vasorelaxation (C,D) in the presence of NONOate (0.5 nM to 15 M) and the wires based on 35N LT and L60S alloys coated with the biocatalytic
multilayered polyelectrolyte coatings (denoted as wire + Enz + NONOate). Control experiments include administering the NONOate in the
absence of wires (denoted as NONOate), using the wires and multilayered coatings with no incorporated enzyme (denoted wire + NONOate), and
using the samples identical to the experimental group and also containing specific inhibitors of the NO-mediated signaling pathways (denoted as wire
+ Enz + NONOate + ODQ/IbTX). Data are presented as mean + SEM, n = S or greater. Statistics is shown for comparing the effects mediated by
the biocatalytic coatings with those mediated by the NONOate (), the coatings with no enzyme (#), and the biocatalytic coatings in the presence of
inhibitors (*) and calculated via a two-way ANOVA followed by Tukey’s multiple comparison test.
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