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Abstract

Background: The European Platform on Rare Disease Registration (EU RD Platform) aims to address the
fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-
coordinating registries, by establishing standards for integration and interoperability. The first practical output of this
effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries.
Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics.
Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD
Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles.

Results: Through a team-based iterative approach, we created semantically grounded models to represent each of
the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and
their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible
values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and
National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be
deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data
without requiring site-specific coding nor expertise in Linked Data or FAIR.
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Conclusions: Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced
or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to
understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches
that were already familiar to them.

Keywords: FAIR data, Rare disease, Interoperability, Linked data, Data transformation, Semantic web, Ontologies,
Common data elements, Disease registries

Background
The FAIR Principles [1] aim to provide guidance that
will lead to an internet of data and services that is highly
descriptive and machine-accessible, resulting in more ex-
tensive data discovery and reuse. FAIR (Findable, Ac-
cessible, Interoperable, and Reusable) data requires
unambiguously identified entities to be richly described
by unambiguously defined and identified concepts from
thesauri and ontologies that are widely shared within a
community and machine readable. When this is
achieved, it will become much more straightforward to
discover task-relevant data over distributed sites, accur-
ately integrate those data, or analyse them by ‘data
visiting’.
A significant barrier to Rare Disease (RD) research is

that RD data is (a) extremely scarce, and (b) spread over
many “boutique” repositories, often single-disease-
specific and often curated by biomedically-oriented ex-
perts, who may not have access to experts in data or
knowledge representation, capture or archival. In an ini-
tial step to address this, the EU RD Platform has begun
to establish standards for integration and interoperabil-
ity. The first practical output of this effort was a set of
16 Common Data Elements that should be implemented
by all RD registries [2]. These include facets such as
“sex”, “date of birth”, “age of onset”, and “diagnosis”,
often together with a constraint on the allowed values of
each of these data elements (for example, the possible
values of ‘age at onset’ are ‘Antenatal’, ‘At birth’, ‘Date
(dd/mm/yyyy)’, or ‘Undetermined’). Achieving uniform-
ity of these 16 data facets, over all RD registries and bio-
banks, would be an excellent first-step towards
enhanced discovery and reuse of these precious data.
Web-scale – which implies “mechanized” – interoper-
ability, however, requires decisions beyond just a list of
data elements, including data models, formats, and
semantics.
The European Joint Programme on Rare Diseases (EJP

RD) is an expansive European (with foreign partners)
project aiming to reduce the suffering of rare disease pa-
tients and their families, through technical, clinical, so-
cial, economic, and health-services mechanisms. EJP RD
spans 35 countries with 87 beneficiaries and 52 linked
parties, and spans all 24 European Rare Disease Refer-
ence Networks (ERNs), totalling approximately 1200

people. Each ERN focuses on a particular class of rare
diseases (for example, neuromuscular or vascular), and
thus each ERN will have multiple registries and/or bio-
banks, which will vary in their level of systematic and
schematic coordination even within a single ERN. To
improve the utility of this massive ecosystem of data col-
lection and curation, EJP RD aims to further the goals of
the EU RD Platform by generating a “Virtual Platform”
for interoperability between RD data assets throughout
Europe and beyond. Speaking only of the technology
layer, the Virtual Platform will provide common, harmo-
nized access to discovery of task-relevant data resources,
supported by a rich layer of metadata describing the
content and context of each participating ERN reposi-
tory. In part, this is being pursued by generating meta-
data that follows the FAIR Data Principles [3, 4], and
global metadata standards are well-established (e.g.,
Dublin Core [5] and Data Catalog – DCAT [6]). This
cannot be said for data, however. The diversity of data,
and the wide range of mechanisms, tools, and devices
for generating it often thwart generic approaches to cre-
ation of data schema. Nevertheless, historically, within
the RD community, there have been efforts to train indi-
vidual data custodians to create FAIR data at-source.
These have taken the form of annually recurring “Bring
Your Own Data” [7] workshops (BYODs) where data
custodians meet FAIR experts and get hands-on experi-
ence in making their resources FAIR.
Because of their open-ended, exploratory structure,

these BYOD events did not converge on a unified model
for RD data, nor even the elements that should be in-
cluded in those models. As such, the workshops primar-
ily succeeded in raising awareness of FAIR, and the
utility and benefits of following the FAIR Principles;
however, the degree of inter-repository harmonization
achieved by these workshops was extremely limited.
Nevertheless, some preliminary data models [8] were
created at BYOD workshops, including the early version
(V0.1.0) of CDE semantic model that is the focus of this
manuscript, which was developed during the FAIRifica-
tion of a registry for vascular anomalies [9–11]..
In the case of the EJP RD project, it was immediately

clear that training individual participants in FAIR data
modelling themselves would be challenging for many
reasons - RD registries are limited by funding, FAIR
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expertise, and time. All three of those barriers make it
infeasible for the initial FAIRification pathway for EJP
RD to involve significant decision-making by the re-
source custodian. Rather, we decided to centralize many
of the decisions, ensuring that they were made by a
small group of FAIR experts, and then disseminated out-
ward to the individual participating registries and bio-
banks via a layer of registry “liaisons” who would
communicate the needs, in both directions, between the
data modellers and the registry custodians.
The final problem was how to enact the FAIRification

itself - that is, how to do the “extract” and “transform”
portions of the traditional Extract/Transform/Load
(ETL) pipeline over resources that had no coordinating
structure, and potentially no ability to code data trans-
formation software themselves. Thus, we needed to
identify an ETL pipeline that could be deployed any-
where, over any native data structure, in highly secure
privacy-sensitive environments, and execute a successful
transformation using only the expertise that could be ex-
pected of most repository curators.
Here we describe the process of data modelling within

the EJP RD, as applied to the set of CDEs defined by the
EU RD Platform. We describe the semantic basis of
those models, and how they have already been applied
to distinctly different data types, showing that they have
not been overly “fitted” to the data elements defined by
the CDEs. Finally, we describe our current attempts to

build an ETL pipeline that can fill these models, using a
simple, structured Comma-Separated Value (CSV) ex-
port of source data from the originating registry hosts.
To help orient a broad range of readers, we attempt to
split the discussion into three groupings: “FAIR Expert
Activities”, where technical details and decisions are de-
scribed; “Data Custodian Activities”, where less technical
deployment decisions and activities are discussed; and
where relevant, “Data Steward Activities” where the role
of the “liaisons” between the FAIR experts and the data
custodians are highlighted.

Methods
FAIR expert activities - modelling
Modelling activities were undertaken via weekly meet-
ings of a core group of EJP RD researchers with exten-
sive experience in ontologies, knowledge representation,
Linked Data modelling, and FAIR data. Meetings were
carried out via Microsoft Teams, where the model under
discussion was presented via screen sharing.
As noted above, the European Platform on Rare Dis-

ease Registration has determined a set of 16 CDEs for
RD registration. These are detailed in Table 1.
Using these elements as a guide, together with add-

itional documentation detailing how these elements
should be filled, a first pass modelling phase [9] was
undertaken where Linked Data representations for each
CDE were constructed, using existing ontological terms

Table 1 The European Platform for Rare Disease Registration set of Common Data Elements that should be made available by all
rare disease registries

Element
ID

Name Values

1.1 Pseudonym String

2.1 Date of birth dd/mm/yyyy

2.2 Sex Female, Male, Undetermined, Foetus (Unknown)

3.1 Patient Status Alive, Dead, Lost in Follow-up, Opted-out

3.2 Date of Death dd/mm/yyyy

4.1 First contact with specialized centre dd/mm/yyyy

5.1 Age at onset Antenatal, At Birth, Date (dd/mm/yyyy), Undetermined.

5.2 Age at diagnosis Antenatal, At Birth, Date, Undetermined

6.1 Diagnosis of the rare disease ORPHA Code, Alpha Code, ICD9/10 Code, ICD9-CM Code

6.2 Genetic Diagnosis Human Genome Variant Sequence (HGVS), HUGO Gene Nomenclature Committee
(HGNC), Online Medelian Inheritance in Man (OMIIM) Codes

6.3 Undiagnosed case Human Phenotype Ontology code and/or HGVS Code related to the inability to
diagnose.

7.1 Agreement to be contacted for research purposes Yes/No

7.2 Consent to reuse data Yes/No

7.3 Biological Sample? Yes/No

7.4 Biobank? URL/No

8.1 Disability Classification via International
Classification of Functioning and Disability (ICF)

Score
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or other shared Globally Unique Identifiers (GUID)
wherever possible to model, for example, genotypes
(OMIM Codes [12]) and phenotypes (Human Phenotype
Ontology Codes [13]).
These first-pass models were then used to frame a

more conceptual modelling process, looking at (for ex-
ample) the inter-dependencies between the CDEs, the
“nature” of the data – for example, is it obtained by
questionnaire or by physical examination? – and what
additional annotation would be useful to contextualize
the CDE for correct interpretation (e.g., the dates of
various phenotype onsets could be used to build a longi-
tudinal record of the patient’s response to treatment).
There were several over-arching guidelines that con-
strained this modelling process:
1) We should use the minimum number of ontologies

possible.
2) We must strictly adhere to the ontological defin-

ition of a concept.
3) The ontologies/vocabularies used must not have a

restrictive license.
4) The model should be designed in a forward-looking

manner, anticipating other likely data elements, to
minimize the need for future disruptive changes.
Examination of the EU RD CDEs revealed that there

were, in fact, many inter-dependencies between them –
meaning that one CDE could not reliably be understood
or contextualized without one or more of the others. For
example, CDE 1.1 - the patient pseudonym – must be a
part of every CDE, since all CDEs are related to an indi-
vidual patient. For example, 4.1 ‘First contact with a spe-
cialized centre’ cannot be interpreted without a
reference to the patient that made contact with the
centre (via their pseudonym). Similarly, since individ-
uals may have multiple diseases, each with its own
diagnosis (CDE 6.1), the “age at diagnosis” (CDE 5.2)
must somehow relate to the disease which was diag-
nosed at that age. In addition, we noted that most
CDEs focused on data that would result from a for-
mal interaction in a clinical setting, but those data
gathering processes might be undertaken at different
locations and times. For example, obtaining a bio-
logical specimen (CDE 7.3) would often be a surgical
process, which would be undertaken in entirely differ-
ent circumstances than the administration of a ques-
tionnaire to generate a disability score (CDE 8.1).
Although the CDE requirements from the EU RD
Platform do not require that this metadata be repre-
sented, it is nevertheless true that these details likely
are being captured in many cases, thus it is useful to
plan a model that can carry this contextual metadata,
now or in the future. This minimizes the degree to
which EJP RD participants would have to change
their workflows to adapt to future changes.

We examined two ontologies that are commonly
used in the life sciences to model processes, work-
flows, and their participants. The Provenance ontol-
ogy (PROV-O) [14] aims to capture information
about the sequence of events that leads to an output,
such as who executed which version of which algo-
rithm at what time, using what input data, and where
is the output data stored. The Semantic Science Inte-
grated Ontology (SIO) [15] is also capable of model-
ling entities, processes, and their qualities/attributes,
but includes additional entity-to-entity or entity-to-
process relationships that enable rigorous and highly
explicit machine-readable patterns associating these to
one another. SIO also has domain extensions, includ-
ing biology and bioinformatics, that can help ensure
that many clinical or biological concepts are being
used in a logically sound manner. For example, SIO
includes CDE-relevant concepts such as “medical
diagnosis”, which allows us to use SIO-defined prop-
erties and entities for the majority of the CDEs. Fi-
nally, SIO has the capacity to represent data content
– that is, while PROV-O has the concept of an En-
tity, which could represent the output of a process, it
does not have the ability to describe what that entity
is, or its value, or its measurement units. Finally,
PROV-O has no way of representing the attributes or
qualities of an individual. Given that almost all of the
CDEs are measurements of some attribute of the pa-
tient who participated in a clinical process, the inabil-
ity to associate the output of a process (like a
phenotype) as an attribute of the participating patient
would make a PROV-O model highly unintuitive for
our target end-users. As such, while PROV-O might
be useful at a later date to describe, for example, the
precise details of a Phenotyping or Genetic Diagnosis
workflow, our needs in this modelling exercise are
distinct, and are better represented by SIO concepts.
Following the documented design patterns for SIO

[16] we derived the core model shown in Fig. 1. Some of
the rationale for this model are as follows: All CDE ob-
servations are, in some way “about” an individual pa-
tient. As such, it is necessary to connect patients to
these observations. In some cases, the CDEs pertain to a
direct attribute of the patient (e.g., their birth date). In
other cases, the CDE is not an attribute of the patient
per se, but rather the connection between a patient and
the CDE is via an action or activity that the patient en-
gaged in; for example, the first interaction of a patient
with a rare disease expert centre. Certainly, for all CDEs
there is at least the process of recording the information,
and as such, we decided that a “process” was a concept
shared by all CDEs. Early discussions also raised the
issue of an individual having multiple roles in the health-
care system, for example, being both a patient and a
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physician. As such, it was necessary to connect a par-
ticipant to the process indirectly, by declaring the role
they play in the process. An individual may have
many roles, and we determined that in every case,
there was a distinct identifier that was assigned to
that role – for example, a driver’s license ID is
assigned to one’s role as a driver, and a student ID is
assigned to one’s role as a student, yet both identi-
fiers may apply to the same individual. As such, we
associated identifiers with individuals via their role,
rather than directly. Finally, processes have outputs,
where those outputs (often) refer to some measure-
ment of an attribute of the patient. The attribute, and
its measurement, are distinct – for example, all pa-
tients share the attribute of “sex” but for some pa-
tients this attribute has the value “male” and for
others it has the value “female”.
Combining these considerations leads to the core

model shown in Fig. 1, where there are 5 “kinds” of
things: entities (individuals, and measurements),
roles, processes, attributes, and identifiers. While
there are additional relationships between these

concepts, we removed all but the relations required
to connect the model. This will simplify the creation
of query systems, by limiting the possible ways the
model can be explored, better enabling the construc-
tion of reusable query templates (an activity that is
also being undertaken within the Virtual Platform, to
ensure that end-users do not need to learn a formal
query language for these data).
Using this high-level model as a guide, the EJP RD

semantic modelling group then reiterated the process
of examining each CDE and, through Teams meetings
and dedicated “designathons” we reached agreement
on which portions of the high-level model were ap-
propriate for each CDE, and what the ontological type
constraints (square boxes in Fig. 1) should be for the
elements of that specific CDE model. As part of the
modelling process, we selected a “base type” for each
of the model elements, for example, the process node
is always ontologically typed as a “sio:process”. In this
way, if there is not a more specific type assigned to
the model node, we still maintain the best practice of
having all nodes in our model ontologically typed.

Fig. 1 Conceptual diagram of the overall SIO model to be applied to the CDEs. It is centred around five primary elements – identifiers, entities
(physical and information-content), roles, processes, and attributes. In the diagram, we provide hypothetical examples of the specific ontological
types that might be associated with each element
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These “base types” are built into our transformation
templates (described below) and require no knowledge
by the end-user. Finally, where appropriate, we se-
lected ontological concepts that would be allowed as
values or attributes for various CDEs. For example, in
the personal information CDE we selected the Na-
tional Cancer Institute Thesaurus’ [17] terms for
“male” and “female”, and we selected the Human
Phenotype Ontology [13] as the set of possible values
for the phenotypic diagnosis CDE.

FAIR expert activities – design a “lingua franca” for data
extraction
Registries participating in the EJP RD have a wide range
of underlying infrastructures and data management and
curation expertise, ranging from well-established com-
mercial enterprises such as Castor [18], to smaller,
parent-run organizations even using spreadsheets to cap-
ture data. They are also largely not coordinating with
one another and are therefore making independent deci-
sions about database structures and the formats of the
captured data. It was therefore clear that, as an initial
step to harmonization, we needed to find a “lowest com-
mon denominator” for an intermediate data representa-
tion format – something more predictable than the
various source data structures, but not yet FAIR. It
needed to be a format that can be generated by data cus-
todians at any level of expertise, from any starting for-
mat, hopefully using only tools with which they are
already familiar. Moreover, a primary objective of EJP
RD is to encourage FAIRness beyond the EJP RD itself,
thus the selected format should be applicable to a wide
variety of expert domains and situations.
Through discussions with EJP RD partners, it became

clear that there was a preference for very straightforward
data structures such as CSV, since this is an exchange
format that can be derived easily from any of the more
complex formats. As such, CSV was selected as the “lin-
gua franca” that would be used by all participants as an
export format, as a step towards harmonization and
FAIRness. The rules given to the data custodians
explaining how to generate these CSV files is described
in the section “Data Custodian Activities – Generating
template-compliant CSV”.

FAIR expert activities – CSV to RDF mapping
Having selected CSV as a starting format, we then chose
a mapping framework that could transform CSV data
into RDF. RDF Mapping Language (RML) was the se-
lected technology, as it is capable of modelling reusable
templates that support not only CSV to RDF transfor-
mations, but also transformations from other formats,
allowing us the opportunity to increase in complexity in
the future without dramatically changing our pipeline.

RML templates specify individual triple patterns that
should be created during a transformation. The subject
Uniform Resource Identifier (URI), predicate URI, and
object URI are represented as strings that may contain
variables, where the variables are references to locations
within the source document (e.g., the appropriate col-
umn header within a CSV file). During a transformation,
every variable in an RML template is replaced by the
value of that location within a single source record (e.g.,
a single row of a CSV file) and then the source is iter-
ated over all records to complete the transformation.
RML templates themselves are represented in RDF and
are therefore not always easily human-readable. With
the aim of simplifying the RML syntax, such that our
EJP RD FAIRification stewards, or potentially the regis-
try data custodians themselves, could edit the template if
required, we identified a second, related technology –
YARRRML [19] – which is a more human-readable way
to declare RML transformation rules, using YAML as
the syntax. YARRRML documents can be converted into
RML templates, which can then be automatically applied
to CSV files to achieve their transformation. Having se-
lected these tools, the FAIRification experts then tran-
scribed each of the CDE models into a set of YARRRML
rules that were then executed to generate RML mapping
documents. The YARRRML documents are stored in the
“YARRRML_Transform_Templates” folder of the CDE
Project GitHub [20] for others to explore and reuse. The
final step of modelling was to create documentation and
example data to provide to the registry custodians, to
guide them in the requirements for the CSV files.

Data custodian activities – generating template-compliant
CSV
The process for creation of the CSV files for each CDE
will likely differ for each registry, as their individual situ-
ations will be diverse. Based on the documentation and
examples provided by the FAIR Expert team, consider-
ations for the registry custodians include:

� Ensuring date formatting is correct (ISO 8601)
� Ensuring that any abbreviated ontology terms have

been converted into their equivalent full URIs (e.g.,
Human Phenotype Ontology terms must be
represented by their URI in the CSV file)

� Ensuring any data elements have been modified to
match the documented constraints (e.g., conversion
of textual descriptors into ontology term URIs)

� Ensuring that every row is uniquely identified (for
this purpose, we have established a web service that
can be called from MS Excel or a custom script that
generates a unique identifier based on a timestamp,
since MS Excel has no inherent capability to
generate GUIDs without custom coding)
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Data steward activities – assisting data custodians
In anticipation of the data custodians having questions
about how to generate template-compliant CSV and the
rationale behind certain decisions, every participant was
assigned a FAIR Data Steward to provide them with as-
sistance and advice. For example, we could anticipate
data custodians being concerned about why one ontol-
ogy was chosen over another or needing advice on a tool
that can cleanse or edit CSV files. In addition, the FAIR
Stewards would bring back suggestions from the Custo-
dians to the FAIR Expert meetings, providing a useful
feedback mechanism where the Steward had personally
engaged with the data, and understood the concern, as
well as being a FAIR expert themselves who could relay
the concern accurately to the FAIR Expert team.

FAIR expert activities – building a transformation pipeline
“RDFizing” is the process of transforming a non-RDF
data format into RDF. We tried two RDFizers that exe-
cute such transformations using RML as the mapping
language – RMLMapper [21], and SDM-RDFizer [22].
RMLMapper has a rich set of features, including the
ability to encode transformation rules that can trigger
execution of algorithms over a CSV cell prior to the
RDF transformation. SDM-RDFizer conversely, lacks
these powerful extensions, but is significantly faster in
our (informal) head-to-head tests. Since YARRRML cur-
rently cannot encode rules, we do not benefit from the
additional power provided by RMLMapper, and thus se-
lected SDM-RDFizer for this modelling initiative. Never-
theless, the choice of RDFizing technology can be
revisited at a later date, without affecting any of our
other decisions.
For storage of the resulting Linked Data, we have se-

lected GraphDB [23], due to its ongoing support by the
developers, the availability of a free (though not open
source) version, and the availability of a fairly compre-
hensive API for mechanization of data loading, mainten-
ance, and querying. GraphDB also supports access
control methods which provide options for securing ac-
cess to the FAIRified dataset. A “bootstrapping” Docker
image for GraphDB was created to ensure that GraphDB
is installed and configured correctly, thus eliminating
the need for the registry host to have this expertise.
Deployment of the ETL pipeline is achieved via

docker-compose, where every component has been
“dockerized” and uses a Docker [24] network to facilitate
communication between the components. This ensures
that there are no unnecessary ports or APIs exposed on
the registry server, helping maintain the security of their
internal space. The three components mentioned above
- RMLMapper, SDM-RDFizer, and GraphDB - are coor-
dinated via a fourth Docker container, representing an
orchestration tool. The orchestrator is triggered by a

Web call to its interface. Once initiated, it automatically
refreshes the current database of YARRRML templates
from the CDE Project GitHub, and then examines the
content of a folder shared with the host. This shared
folder contains the host’s CSV files that will be subject
to RDF transformation. Using filename-matching, the
system matches each CSV with an appropriate
YARRRML template and executes the transformation.
After all transformations have completed, a connection
is opened to GraphDB, all previous data is deleted, and
the refreshed data is uploaded.
The suite of docker images are referred-to as the

“CDE-in-a-Box”, and the instructions for running the
bootstrapping process, as well as how to interact with
CDE-in-a-Box, are available on a dedicated Git [25].

FAIR expert activities – testing
Speed tests were run by calling RMLMapper and SDM-
RDFizer images via docker-compose on a Linux PC. A
variety of exemplar 10.000 row CSV files and YARRRML
templates were used for the measurement and execution
process. The average speed of RDF triple generation was
12,500 triples per second. The tests were run on an
AMD Ryzen 73800XT 3.9 GHz CPU workstation, with
32 Gb 3200Mhz RAM memory, RTX 2070 Super 8 Gb
GPU and M.2. NVMe SSD memory. Quality-control
tests will, largely, be registry-specific, though we are con-
sidering possible mechanisms for generalizing this prob-
lem through the use of Shape Expressions (ShEx)
validation (described in “Future Work” in the Discus-
sion section).

Results
The models
The models created to capture the 16 CDEs are de-
scribed in Table 2, and are available in the CDE Project
GitHub .
To help data custodians understand the models, they

are generated and published in a variety of formats.
Most importantly, an exemplar “runnable” CSV file,
which is documented on a Web page – one page per
CDE – containing a description of the CDE Model, its
intended use, the CSV column headers, the constraints
on the content of each column, and any usage notes that
will assist the data custodians in their understanding of
how to generate compatible CSV. A screenshot of the
documentation is provided in Fig. 2.
To assist both data custodians and data consumers, a

variety of other representations are also generated.
When the exemplar CSV is run through the transform-
ation pipeline, the resulting RDF file is then converted
into a model image via a semi-automated mechanism
[37]. A ShEx model is also created to allow data custo-
dians (and users) to validate these transformations. The
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ShEx models are manually created according to the
Shape Expressions 2.1 Primer specification [38], and the
resulting ShEx file is converted into an image via the
RDFShape tool [39]. An exemplar RDF visualization for
CDE #3 “Patient Status” is diagrammed in Fig. 3, and a
diagram of the ShEx validator for that model is shown in
Fig. 4.

Model filling - “CDE in a Box”
As described in the Methods section, the CDE-in-a-Box
is deployed via docker-compose and is triggered by a
simple Web call to a local address. Transformed data is
automatically loaded into a CDE-specific data store on
GraphDB, ensuring that the security constraints on this
data can be managed independently of other datasets
provided by the software.
The relationship of all of the components to one an-

other, and the responsibilities of each participant, is dia-
grammed in Fig. 5.

Discussion
When undertaking any modelling activity, there is al-
ways the potential to “over-fit” the model. To this end,
we have been attempting to apply the model to data-
types other than those covered in the CDE list. Specific-
ally, we have looked at three very distinct datatypes:
physical body measurements, laboratory tests, and
Patient-Reported Outcome Measurements (PROMs),
which are a questionnaire-style metric. In all cases, we

were able to generate the Linked Data record with few
or no changes to the core model. In particular, the Phys-
ical Body measurements required only an additional link
to a measurement protocol; for PROMs we added an In-
put to the Process node representing the PROM ques-
tion; and for Laboratory Tests we extended this further
where an Input is included - constrained to being a body
tissue - a “target” is included - constrained to being the
compound being measured - and link is added to the
measurement protocol document (see Fig. 6). Hence, we
believe that this core model is capable of representing
the majority of data entities we will encounter in the
biomedical/clinical space with only minor modifications.
With respect to generalizability and scalability of this

approach, a comprehensive survey of the European Ref-
erence Networks (ERNs) participating in EJP RD re-
vealed 13 categories of data from 16 ERN data
dictionaries; for example, “laboratory tests” and “per-
sonal information” are two such categories. Every cat-
egory requires a YARRRML template to be constructed,
following the core pattern but changing, for example,
the default ontological types of each node, and the col-
umn header names. We have built code libraries that
automatically generate these YARRRML templates via a
simple API, and thus in practice, a new YARRRML
model can be created in approximately one hour, now
that the general pattern has been established.
Documentation of the model, and decisions about the

constraints on the allowed content of each CSV column

Table 2 Models created to represent the CDEs. Models are created in YARRRML and made available on the CDE Project GitHub,
accompanied by markdown documentation explaining the structure of an appropriate CSV file. Note that not all EU RD CDEs appear
1-to-1 with a CDE model. This is because, for example, the consent CDE can be reused for diverse types of consent (e.g., consent for
contact, consent for data reuse), and the Pseudonym CDE is a part of every other model, and therefore has not been modelled as
an independent element

CDE Model Name Purpose

Disease Progression
[26]

A “container” node to group together all other CDEs that refer to the same diagnosis. For example, the “age of diagnosis” CDE
is related to a specific rare disease via traversal into the “disease progression” container, and then traversal into the “diagnosis”
CDE that is also connected to “disease progression”

Care Pathway [27] Captures the date of first contact with the specialist healthcare system; is connected to “disease progression”

Diagnosis [28] Captures the final disease diagnosis using ORPHA codes; is connected to “disease progression”

Disease History [29] Captures age at first symptoms and age at diagnosis; is connected to “disease progression”

Genetic Diagnosis
[30]

Captures the sequence variant(s) found in this patient, using a variety of different coding systems; is connected to “disease
progression”

Patient Consent [31] Captures the consent of the patient over several axes (e.g., consent for contact, consent for data reuse). Provides a reference
to the signed consent form, as well as an input reference to the (blank) consent template.

Patient Status [32] Captures the current status of the patient, and their date of death if the patient is deceased

Personal Information
[33]

Captures (superficial) personal information such as birth date and sex (there are ongoing debates in the EJP modelling group
as to whether this should be converted to an age, or an age-range, for improved privacy)

Phenotyping [34] Captures the phenotypes of the patient, using Human Phenotype Ontology terms

Disability [35] Captures the score for a disability test. The specific test administered is indicated as one of the child nodes of obo: NCIT_
C20993 (Clinical or Research Assessment Tool), and thus this CDE model is broadly useful for many disorders.

Undiagnosed [36] Captures the case where a patient has phenotypic anomalies, and an identified sequence variant, but for some reason has not
been definitively diagnosed.
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takes more consideration and time, though all elements
of a well-documented model can be easily created in less
than a day. This, however, leads to a problem for which
the correct solution is, as yet, not known. Because the
models themselves are generalized, the problem of
selecting the correct specific value for a given column
becomes a task for the data provider. For example, in
the Body Measurement model, we document that the
“attribute being measured” column should contain an
ontology URI that is a child of obo: NCIT_C19332 (per-
sonal attribute). While many of the participating hosts
are familiar with ontologies, “coding” (the act of assign-
ing a controlled vocabulary term to a concept, observa-
tion, or phenomenon) is an activity primarily undertaken
by insurance and governmental organizations, and by
trained disease classifiers, and as such many other par-
ticipants will not have this experience. Thus, we suspect
that this task may be difficult for a subset of our registry

participants. One alternative is that the FAIR Experts
create a specific model for every case (every attribute,
every lab measurement, etc.). This, however, would re-
sult in many highly specific models, and would in turn,
require the data host to generate separate CSV files for
each model. The alternative is to keep the models gen-
eric and find another way to provide advice or support
to the data hosts as they generate the CSV. We are ex-
ploring both solutions to gain a better understanding of
how to address this problem in the future.
The transformation step itself – generating ~ 12,500

RDF statements per second – would appear to be suffi-
ciently fast that it would be possible to generate a new
snapshot of a registry on a nightly basis.
Finally, the models are intended to be reusable, and

the onus of creating a matching CSV is put on the data
custodians/experts. Another approach would have been
to create a comprehensive transformation map of the

Fig. 2 The Markdown documentation explaining how to prepare a CSV file for the “Patient Status” CDE. Documentation includes, where
appropriate, the restrictions on the possible values in a given column, such as ‘status uri’ in this example
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entire dataset, for every participating registry using, for
example, R2RML [40]. Since the data custodians are not
anticipated to be FAIR experts, this approach would
have centralized the problem of mapping into the hands
of the few core technologists in the EJP RD, which we
feel is a much less practical solution, and less scalable.
The solution proposed here distributes the effort over
many more participants, and the sharing of a set of core
models ensures that, despite being non-coordinating, the
participating registries will nevertheless generate inter-
operable outputs.

Exemplar use-case
Two registries about vascular rare diseases have en-
tered into a data sharing agreement for a study on
the relationship between identical mutations and
phenotype/disability over many individuals. They se-
lect the Genetic Diagnosis, Phenotyping and Disability

CDE as those that will contain the most relevant data.
One registry executes three SQL queries on their Or-
acle database, which generate three CSV files follow-
ing the CDE Model Templates. They activate CDE-in-
a-Box, which converts those data into FAIR Data
loads it into a database within their own secure space.
The partner has their data in the form of a series of
MS Excel spreadsheets. They export from spreadsheet
into CSV, and similarly activate CDE-in-a-box to gen-
erate FAIR Data. The investigative query is shared by
both sites, and executed within their secure spaces,
where they exchange only the query results. They are
confident that they are extracting and integrating the
full gamut of information from both sites because of
the harmonization of structural and ontological
choices that are enforced by the CDE models, yet
their individual tasks only involved generating the
CSV and executing the query. Thus, the process of

Fig. 3 Visualization of an exemplar RDF instance for the “Patient Status” CDE (CDE 3.1 & 3.2)
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querying over both datasets was quite straightforward
for both participants, despite having notably different
underlying data structures.

Peer initiatives
Beyond CDEs, the most widely used health care data ex-
change formats are all exploring FAIR-oriented map-
pings. OMOP CDM [41] and ContSys [42] were recently
compared [43] for their ability to be transformed to one
another, and to have their facet values captured in
(largely) SNOMED CT to enhance their FAIRness. The
HL7’s FHIR4FAIR project began its public facing activ-
ities at a “connectathon” event in early 2021 [44] and ex-
pects to have an early and final normative document in
late 2023 and early 2024, respectively describing (among

other things) how to apply the RDA FAIR Maturity
Model Working Group Maturity Indicators [45] to FHIR
data structures (both manual and automated) and define
a minimal metadata set for health recordsets. The Crit-
ical Path Institute (C-PATH) [46] is working in parallel
with the FAIR data transformation subgroup within the
EJP RD to attempt to achieve a mapping between the
Clinical Data Interchange Standards Consortium (CDIS
C) [47] standards and the EJP RD semantic CDEs, with
their first attempt being to use LinkML/BioLink [48] as
a domain-neutral abstract representation of the clinical
data that might act as a “Rosetta stone”. Finally, the
OpenEHR initiative has adopted design principles [49]
that enables computable semantics in their data models
[50]. Thus, the latter of these peer initiatives resembles

Fig. 4 Visualization of the ShEx validation shape for the Patient Status CDE data
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Fig. 5 The components of the workflow annotated with the responsibilities of the parties. The left side of the diagram, outlined in green, are the
responsibilities of the data custodian in collaboration with the Data Steward. This includes export of their registry data into CSV format, and
possibly some additional modification of that exported data to conform to the template. On the right is the fully automated CDE-in-a-Box, which
is constructed by the FAIR Expert team and provided as a docker-compose installation. The arrow labelled “trigger” is the Web page call that the
data custodian makes when they are ready to execute their transformation

Fig. 6 The model for Laboratory Measurements. Of note are the three new connections on the “Quantitation” (Process) node – one representing
the input (blood), one representing the target molecule (haemoglobin), and the third representing the link to the protocol. The remainder of the
model is (structurally) identical to the core model shown in Fig. 1
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our own attempts to build an overall model based in rich
semantics; however, we differ from most of these peer
initiatives in that we are attempting to map arbitrary
existing formats from non-coordinating registries into a
unified, semantically-grounded (in SIO) FAIR model,
versus taking an existing standard model and attempting
to make it more FAIR.
A notable peer initiative, with highly similar goals to

our own, is found in PennTURBO [51], which also pur-
sues a multi-step transformation process to achieve a
final rich semantic model. PennTURBO’s workflow mir-
rors ours in several ways: first, there is a transformation
from native format into a semantically-impoverished
intermediate representation (in our case, CSV, and in
PennTURBO, a graph). They then similarly use a do-
main specific language to transform the intermediate
representation into the final semantically rich model (in
our case, RML, and in PennTURBO, SPARQL). A key
distinction between the two projects is the point of re-
sponsibility for the generation of the intermediate for-
mat. PennTURBO includes a set of data extraction/
transformation instructions for each data source, thus
the responsibility for the correct interpretation of the
data source, and its export, is held by the PennTURBO
development team. In contrast, the transformation pipe-
line presented here creates only a richly documented
intermediate template, which must then be filled by any
data source that wishes to participate. Thus, the respon-
sibility for correctly filling that template is pushed to the
participant themselves, as is the correct interpretation of
the data holdings. It is an open question whether the
decentralized approach we have taken will be more scal-
able than PennTURBO, or if the same decentralization
will lead to more erroneous template filling, as the re-
sponsibility for accurate data export moves further away
from the FAIR experts. Nevertheless, like PennTURBO,
our mapping extends beyond identifying appropriate
ontology terms for each data facet, and both projects
share a goal of attempting to better model the activities
around the creation of data – creating a “digital twin”
for the data, which as a beneficial consequence, provides
model positions for metadata about every element, in-
cluding the participants, the relationships between them,
and the process’ protocol and other annotations.

Future work
Work is underway to automate the creation of ShEx
models for all CDEs, and use them to add a quality-
checking layer into the transformation pipeline. More-
over, we additionally plan to use ShEx to publish a pub-
lic model of the entire contained dataset, which we
believe can be used both to aid discovery, but more im-
portantly, to facilitate future efforts around federated
queries.

With the goal of allowing future extension of these
models – for example, by expanding the ontological con-
cepts allowed as possible values, or adding new or
repository-specific metadata we will soon begin to pro-
vide training to those who wish to learn how to build or
edit the YARRRML templates themselves. We are im-
proving the tooling that facilitates construction of these
templates to better enable registry custodians to expand
or diversify the templates without necessarily requesting
help from the EJP RD modelling team. In this way, we
hope that the core data will be interoperable, even if in-
dividual sites add enhanced metadata that is not in-
common with other registries. Moreover, dissemination
of the expertise around template-building provides a
path to self-sustainability of this initiative, beyond the
end of the EJP-RD project.
Extension and revision, however, must be done with a

recognition of why this centralized modelling initiative
was deemed necessary. Interoperability is difficult to
achieve, particularly without agreement on the concepts
being modelled. Moreover, the decision to use a model
backbone with very strict semantics (SIO) makes it ne-
cessary to be extremely careful in the selection of ontol-
ogy terms – ensuring, for example, that there is a
distinction between the concepts of “blood pressure” as
a quality/attribute of a patient, versus “blood pressure”
referring to the output of a measuring process. These
kinds of decisions require expertise and experience in
ontology construction and use. As such, extension of the
models in a distributed manner by end-users introduces
several risks regarding interoperability, including lacking
mappings between ontologies, reduced shared semantics,
and restricted use of ontologies, for example due to li-
censing restrictions. The same issue has been
highlighted in other CDE initiatives, and was addressed
in a recent overview of the problems related to CDE
mapping [52] (using the term in its most general sense,
not specifically the RD CDEs that are discussed in this
manuscript). They noted that the objective of CDEs – to
assist in the harmonization of data between independent
studies – was being thwarted by imprecise definitions of
those CDEs (a problem shared with the CDEs upon
which this study is based). They further noted that
“CDEs can deliver more value when they conform to ac-
cepted data standards, are bound to terminologies and
are used consistently across studies”, and that, for this
reason, CDE-focused initiatives are falling far short of
the objectives of FAIRness.

Conclusions
We undertook a process of constructing a reusable, gen-
eric data model, based on the design principles of the
Semantic Science Integrated Ontology, to represent all
the EU Rare Disease Platform Common Data Elements.
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Emergent mapping technologies such as YARRRML,
RML, and “RDFizing” tools allowed us to create an auto-
mated pipeline for filling these data models starting from
a well-documented CSV template – a format accessible
to all our target end-users. We demonstrated the generic
nature of the model by successfully extending it - while
remaining within the overall architecture of SIO - to
widely disparate non-CDE clinical data within the Rare
Disease space. Feedback from end-users indicates that
they found this solution helpful, and easy to apply. As
FAIR data publishing becomes increasingly an expect-
ation – even a requirement – of funding agencies and
publishers, there is an urgent need for straightforward
tooling to assist data providers to comply with these ex-
pectations. In many cases, those who generate data will
not have expertise in data modelling, and particularly
not in semantically grounded data modelling, as is a re-
quirement of FAIR. The activities and workflows de-
scribed here indicate that the approach of building a
generic, reusable, models, and an automated pipeline to
fill them, will be widely applicable in biomedicine and
beyond.
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