727 research outputs found
The youth in Kaliningrad, Gdansk and Klaipeda: geopolitical vision of the world, identity and images of the other
This work juxtaposes the analysis of the federal discourse on the exclave position of the Kaliningrad region in 1994-2012 based on the screening by the Nezavisimaya gazeta and the results of surveys of students at the Immanuel Kant Baltic Federal University and the Universities of Gdansk and Klaipeda using a similar questionnaire. Students of all three universities show latent dissatisfaction with employment prospects, which is manifested in the declared intention to emigrate. The orientation of young residents of Kaliningrad and their peers from Gdansk and Klaipeda towards prevailing connections with Europe is complicated by the uncertainty of the EU-Russia relations. Young residents of Gdansk and Klaipeda reproduce dated stereotypes, and their interest in the Kaliningrad region is limited. However, as the experience of the other countries suggests, local border traffic between the Kaliningrad region and the neighbouring Polish voivodeships can contribute to the improvement of mutual images. Long-lasting eforts to diversify cooperation and promote a positive image of Kaliningrad in the neighbouring Polish regions can prove worthwhile. Apart from the measures aimed at strengthening the region's economic base, it is necessary to increase the symbolic capital of Kaliningrad to achieve harmonious development of Kaliningrad identity
Sudy of the Propagation of Decimeter Radiowaves in the Atmosphere of Venus with the Aid of AIS ''venera 4''
Radio wave propagation in Venus atmosphere based on approximating inhomogeneity of refractivit
The stress-strain state of the flat rope of hoisting engine with considering their technical state
Obtained an analytical dependence for determining the tensile forces acting in cables of the fl at rubberized rope. It takes into account the design of the hoisting engine β the deviations of generating line of the drum from a straight and of the possible break of the cable in rope. A comprehensive account of the impact of various factors on the stress-strain state of the rope allows determining the loss of tractive capacity in operation on the hoisting engine. The results should be taken into account in the design and operation of hoisting and transporting machines with fl at traction bodies
Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy
The ferroelectric domain structure and its dynamics under applied electric field have been studied with nanoscale resolution by atomic force microscopy (AFM). Two mechanisms responsible for the contrast between opposite domains are proposed: large built-in domains are delineated in friction mode due to the tipβsample electrostatic interaction, and small domains created by an external field are imaged in topography mode due to piezoelectric deformation of the crystal. The ability of effective control of ferroelectric domains by applying a voltage between the AFM tip and the bottom electrode is demonstrated. It is experimentally confirmed that the sidewise growth of domain proceeds through the nucleation process on the domain wall
Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy
The ferroelectric domain structure and its dynamics under applied electric field have been studied with nanoscale resolution by atomic force microscopy (AFM). Two mechanisms responsible for the contrast between opposite domains are proposed: large built-in domains are delineated in friction mode due to the tipβsample electrostatic interaction, and small domains created by an external field are imaged in topography mode due to piezoelectric deformation of the crystal. The ability of effective control of ferroelectric domains by applying a voltage between the AFM tip and the bottom electrode is demonstrated. It is experimentally confirmed that the sidewise growth of domain proceeds through the nucleation process on the domain wall
Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ° N-Π°Π»ΠΊΡΠ»ΡΠ²Π°Π½Π½Ρ Π΄ΡΠ΅ΡΠΈΠ» 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ²
It has been shown that the ternary condensation of oxaloacetic ester (diethyl 2-oxosuccinate), aromatic aldehydesΒ and 3-amino-1,2,4-triazole or 5-aminotetrazole in dimethylformamide results in formation of the corresponding diethyl 7-aryl-4,7-dihydroazolo[1,5-a]pyrimidin-5,6-dicarboxylates. By 1H NMR spectroscopy (according to the data of the chemical shifts of C(2)H-protons for the corresponding N(4)H- and N(4)-methylderivatives ofΒ 7-phenyl-4,7-dihydro[1,2,4]triazolo[1,5-a]pyrimidin-5,6-dicarboxylate) it has been found that alkylation of 4,7-dihydro[1,2,4]azolo[1,5-a]pyrimidin-5,6-dicarboxylates in the acetonitrileβsaturated water alkali system leads selectively to formation of N(4)-alkyl derivatives. Both the starting compounds obtained and their N(4)-methylsubstitutedΒ analogues together with relative diethyl 4-aryl-3,4-dihydropyrimidin-2(1H)-on-5,6-dicarboxylates, 6-unsubstitutedΒ 4-aryl-3,4-dihydropyrimidin-2(1H)-on-5-dicarboxylates and the derivatives of 6-COR-7-aryl-4,7-dihydro[1,2,4] triazolo[1,5-a]pyrimidines are the promising objects for studying benzyl C(7)-functionalization of 4,7-dihydroazoloΒ 1,5-a]pyrimidines, as well as of reactions associated with the presence of double C=C-bonds activated by twoΒ electron withdrawing groups. Obtaining of the key N(4)H- and N(4)Me-derivatives of 7-phenyl-4,7-dihydro[1,2,4]Β triazolo- and tetrazolo[1,5-a]pyrimidin-5,6-dicarboxylates also opens the way to the research of biological propertiesΒ of the compounds of this class. It is noteworthy that being a three-component one the reaction studied, without any doubts, are appropriate for the synthesis of the derivatives of 7-aryl-4,7-dihydro[1,2,4]triazolo- andΒ tetrazolo[1,5-a]pyrimidines containing two electron withdrawing substituents in positions 5 and 6.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Π°Ρ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΡ ΡΠ°Π²Π΅Π»Π΅Π²ΠΎΡΠΊΡΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠΈΡΠ° (Π΄ΠΈΡΡΠΈΠ» 2-ΠΎΠΊΡΠΎΡΡΠΊΡΠΈΠ½Π°ΡΠ°),Β Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄ΠΎΠ² ΠΈ 3-Π°ΠΌΠΈΠ½ΠΎ-1,2,4-ΡΡΠΈΠ°Π·ΠΎΠ»Π° ΠΈΠ»ΠΈ 5-Π°ΠΌΠΈΠ½ΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»Π° Π² Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΠΈΠ΄Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
Π΄ΠΈΡΡΠΈΠ» 7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ². Π‘ ΠΏΠΎΠΌΠΎΡΡΡ 1Π Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΄Π²ΠΈΠ³ΠΎΠ² ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² Π‘(2)HΒ Π΄Π»Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
N(4)H- ΠΈ N(4)ΠΠ΅-ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π΄ΠΈΡΡΠΈΠ» 7-ΡΠ΅Π½ΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]Β ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°) ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π°Π»ΠΊΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ 7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»-Π½Π°ΡΡΡΠ΅Π½Π½Π°Ρ Π²ΠΎΠ΄Π½Π°Ρ ΡΠ΅Π»ΠΎΡΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ N(4)-Π°Π»ΠΊΠΈΠ»ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
. ΠΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΡΡ
ΠΎΠ΄Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΈΡ
N(4)-ΠΌΠ΅ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈ Π½Π°ΡΡΠ΄Ρ Ρ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π΄ΠΈΡΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ, 6-Π½Π΅Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ ΠΈΒ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ 6-COR-7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ² ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΎΠΉ Π‘(7)-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ 4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΉ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ C=C-ΡΠ²ΡΠ·ΠΈ, Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π²ΡΠΌΡ Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΡΠΌΠΈ Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ»ΡΡΠ΅Π²ΡΡ
N(4)H- ΠΈ N(4)ΠΠ΅-ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
7-ΡΠ΅Π½ΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΠΈ ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠΊΡΡΠ²Π°Π΅Ρ ΠΏΡΡΡ ΠΊ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌΒ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°. ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½Π°Ρ ΡΠ΅Π°ΠΊΡΠΈΡ, ΡΠ²Π»ΡΡΡΡ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ, Π±Π΅Π·ΡΡΠ»ΠΎΠ²Π½ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΈΡ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΎΡΠ½ΡΡ
Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΠΈ ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π΄Π²Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΡΡ
Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
5 ΠΈ 6.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΠΎ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Π° ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ ΡΠ°Π²Π»Π΅Π²ΠΎΠΎΡΡΠΎΠ²ΠΎΠ³ΠΎ Π΅ΡΡΠ΅ΡΡ (Π΄ΡΠ΅ΡΠΈΠ» 2-ΠΎΠΊΡΠΎΡΡΠΊΡΠΈΠ½Π°ΡΡ), Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
Π°Π»ΡΠ΄Π΅Π³ΡΠ΄ΡΠ² ΡΠ° 3-Π°ΠΌΡΠ½ΠΎ-1,2,4-ΡΡΠΈΠ°Π·ΠΎΠ»Ρ Π°Π±ΠΎ 5-Π°ΠΌΡΠ½ΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»Ρ Π² Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΡΠ΄Ρ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΒ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
Π΄ΡΠ΅ΡΠΈΠ» 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ². ΠΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡΒ 1Π Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ (Π·Π° Π΄Π°Π½ΠΈΠΌΠΈ ΠΏΡΠΎ Ρ
ΡΠΌΡΡΠ½Ρ Π·ΡΡΠ²ΠΈ ΡΠΈΠ³Π½Π°Π»ΡΠ² ΠΏΡΠΎΡΠΎΠ½ΡΠ² Π‘(2)Π Π΄Π»Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
N(4)H- ΡΠ°Β N(4)Me-ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π΄ΡΠ΅ΡΠΈΠ» 7-ΡΠ΅Π½ΡΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ²) Π²ΡΡΠ°-Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π°Π»ΠΊΡΠ»ΡΠ²Π°Π½Π½Ρ 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ² Ρ ΡΠΈΡΡΠ΅ΠΌΡ Π°ΡΠ΅ΡΠΎΠ½ΡΡΡΠΈΠ»Π½Π°ΡΠΈΡΠ΅Π½ΠΈΠΉ Π²ΠΎΠ΄Π½ΠΈΠΉ Π»ΡΠ³ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ N(4)-Π°Π»ΠΊΡΠ»ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
. Π―ΠΊ ΠΎΡΡΠΈΠΌΠ°Π½Ρ Π²ΠΈΡ
ΡΠ΄Π½ΡΒ ΡΠΏΠΎΠ»ΡΠΊΠΈ, ΡΠ°ΠΊ Ρ ΡΡ
Π½Ρ N(4)-ΠΌΠ΅ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½Ρ Π°Π½Π°Π»ΠΎΠ³ΠΈ ΠΏΠΎΡΡΠ΄ Π·Ρ ΡΠΏΠΎΡΡΠ΄Π½Π΅Π½ΠΈΠΌΠΈ Π΄ΡΠ΅ΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ, 6-Π½Π΅Π·Π°ΠΌΡΡΠ΅Π½ΠΈΠΌΠΈ Π΅ΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ ΡΠ° ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΠΌΠΈ 6-COR-7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ² Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΠΎΠ±βΡΠΊΡΠ°ΠΌΠΈ Π΄Π»Ρ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΎΡ Π‘(7)-ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·Π°ΡΡΡ 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ², Π° ΡΠ°ΠΊΠΎΠΆ ΡΠ΅Π°ΠΊΡΡΠΉ,Β ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΡ
Π· Π½Π°ΡΠ²Π½ΡΡΡΡ ΠΏΠΎΠ΄Π²ΡΠΉΠ½ΠΎΠ³ΠΎ C=C-Π·Π²βΡΠ·ΠΊΡ, Π°ΠΊΡΠΈΠ²ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π΄Π²ΠΎΠΌΠ° Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΠΈΠΌΠΈ Π³ΡΡΠΏΠ°ΠΌΠΈ. ΠΡΡΠΈΠΌΠ°Π½Π½ΡΒ ΠΊΠ»ΡΡΠΎΠ²ΠΈΡ
N(4)H- Ρ N(4)ΠΠ΅-ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
7-ΡΠ΅Π½ΡΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΡΠ° ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ² ΡΠ°ΠΊΠΎΠΆ Π²ΡΠ΄ΠΊΡΠΈΠ²Π°Ρ ΡΠ»ΡΡ
Π΄ΠΎ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΡΠΏΠΎΠ»ΡΠΊ ΡΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡ. ΠΡΠ΄Π·Π½Π°ΡΠΈΠΌΠΎ,Β ΡΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π° ΡΠ΅Π°ΠΊΡΡΡ, Π±ΡΠ΄ΡΡΠΈ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ, Π±Π΅Π·ΡΠΌΠΎΠ²Π½ΠΎ ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΈΡΡ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½ΡΒ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΠΎΡΠ½ΠΈΡ
Π±ΡΠ±Π»ΡΠΎΡΠ΅ΠΊ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΡΠ° ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ²,Β ΡΠΎ ΠΌΡΡΡΡΡΡ Π΄Π²Π° Π΅Π»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½Ρ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠΈ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ
5 ΡΠ° 6
Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid 4He
We present measurements of the drag forces on quartz tuning forks oscillating at low velocities in normal and superfluid 4He. We have investigated the dissipative drag over a wide range of frequencies, from 6.5 to 600 kHz, by using arrays of forks with varying prong lengths and by exciting the forks in their fundamental and first overtone modes. At low frequencies the behavior is dominated by laminar hydrodynamic drag, governed by the fluid viscosity. At higher frequencies acoustic drag is dominant and is described well by a three-dimensional model of sound emission
Nanoscale resolution immersion scanning thermal microscopy
Nanoscale thermal properties are becoming of extreme importance for modern electronic circuits that dissipate increasing power on the length scale of few tens of nanometers, and for chemical and physical properties sensors and biosensors using nanoscale sized features. While Scanning Thermal Microscopy (SThM) is known for its ability to probe thermal properties and heat generation with nanoscale resolution, until today it was perceived impossible to use it in the liquid environment due to dominating direct heat exchange between microfabricated thermal probe and surrounding liquid that would deteriorate spatial resolution. Nonetheless, our theoretical analysis of SThM in liquids showed that for certain design of SThM probe with resistive heater located near the probe tip, their thermal signal is only moderately affected, by less than half on immersion in a dodecane environment. More significantly, its spatial resolution, surprisingly, would remain practically unaffected, and the thermal contact between the tip apex and the studied sample would be beneficially improved. Our experimental trials of such immersion SThM, or iSThM, were fully successful and here we report for the first time nanoscale SThM measurements of thermal conductivity of Ultra Large Scale Integration polymerceramic metal interconnects with the spatial thermal resolution down to 50 nm. Further studies of heat transport in nanoscale graphite flakes in iSThM suggested, in particular, that highly anisotropic thermal conductivity in graphene layers may play significant role in the nanoscale thermal transport in liquid environment. New iSThM opens a wide range of applications from noncontact measurements of thermal transport in semiconductor devices to exploring graphene energy storage, catalytic reactions and heat generation in biological systems
Measurements of vortex line density generated by a quartz tuning fork in superfluid 4 He
We present proof-of-concept measurements of the vortex line density generated by a quartz tuning fork resonator probed by the attenuation of second sound in superfluid 4He at 1.6 K. The forceβvelocity response of a quartz tuning fork operating at a frequency of 31 kHz exhibited the onset of extra damping at a velocity of 0.5 msβ1. Attenuation of the 5th resonant mode of second sound was observed at the same velocity, indicating the production of vortex lines. Our measurements demonstrate that an increase of the drag coefficient corresponds to the development of quantum turbulence
- β¦