62 research outputs found
Bond activation in iron(II) and nickel(II) complexes of polypodal phosphanes
A pyridine-derived tetraphosphane ligand (donor set: NP4) has been found to undergo remarkably specific C-P bond cleavage reactions, thereby producing a ligand with an NP3 donor set. The reaction may be reversed under suitable conditions, with regeneration of the original NP4 ligand. In order to investigate the mechanism of this reaction, the NP3 donor ligand C5H3N[CMe(CH2PMe2)2][CMe2(CH2PMe2)] (11) was prepd., and its iron(II) complex 4 generated from Fe(BF4)2·6 H2O, with Me diethylphosphinite (7) as an addnl. monodentate ligand. Ligand 11 has, in addn. to the NP3 donor set, one Me group in close contact with the iron center, reminiscent of an agostic M···H-C interaction. Depending on the stoichiometric amt. of iron(II) salt, a side product 15 is formed, which has a diethylphosphane ligand instead of the phosphinite 7 coordinated to iron(II). While attempts to deprotonate the metal-coordinated Me group in 4 were unsuccessful, the reaction was shown to occur in an alternative complex (18), which is similar to 4 but has a trimethylphosphane ligand instead of the phosphinite 7. The reaction of complex 15 with CO gave two different products, which were both characterized by single-crystal X-ray diffraction. One (19) is the dicarbonyl iron(II) complex of the triphosphane ligand 11, the other (3) is the carbonyl iron(II) complex of the tetraphosphane C5H3N[CMe(CH2PMe2)2]2 (1). This suggests an intermol. mechanism for the C-P bond formation in question. [on SciFinder(R)
New Synthetic Routes for 1-Benzyl-1,4,7,10-tetraazacyclododecane and 1,4,7,10-Tetraazacyclododecane-1-acetic Acid Ethyl Ester, Important Starting Materials for Metal-coded DOTA-Based Affinity Tags
Two improved routes to synthesize 1-benzyl-1,4,7,10-tetraazacyclododecane (6) and 1,4,7,10- tetraazacyclododecane-1-acetic acid ethyl ester (11) are described as well as the synthesis of 1-{2-[4-(maleimido-N-propylacetamidobutyl)amino]-2-oxoethyl}-1,4,7,10-tetraazacyclododecane- 4,7,10-triacetic acid (17) and its Y, Ho, Tm, and Lu complexes. The 1H and 13C NMR spectra of the new compounds as well as the single crystal X-ray structure analyses of the intermediates 4-benzyl-1,7-bis(p-toluenesulfonyl)diethylenetriamine (3) and 1,4,7-tris(p-toluenesulfonyl)diethylenetriamine (7) are reported and discussed. The rare earth complexes of 17 have been characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry.DFG, SPP 1166, Lanthanoidspezifische Funktionalitäten in Molekül und Materia
Axial tubule junctions control rapid calcium signaling in atria.
The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon "super-hubs" thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias
The genetic prehistory of the Greater Caucasus
5月16日,厦门大学人类学系、德国马普所、德国考古所、俄罗斯文化遗产联合会、奥地利维也纳大学人类学系、爱尔兰都柏林大学学院考古系、罗蒙诺索夫莫斯科国立大学考古系和人类学博物馆、俄罗斯国立东方艺术博物馆、俄罗斯联邦达吉斯坦考古与民族志研究所历史系、美国韦尔斯利学院人类学系、瑞士巴塞尔大学史前与考古科学研究所、德国国家遗产博物馆等36家单位的46位共同作者组成的国际合作团队在BioRxiv上预发表论文《The genetic prehistory of the Greater Caucasus》,厦门大学人类学系王传超研究员为论文的第一作者和通讯作者,也是该国际团队中的唯一一位来自中国的合作者。【Abstract】Archaeogenetic studies have described the formation of Eurasian 'steppe ancestry' as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4th millennium BCE that subsequently facilitated the advance of pastoral societies likely linked to the dispersal of Indo-European languages. To address this, we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting that - unlike today - the Caucasus acted as a bridge rather than an insurmountable barrier to human movement. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected Anatolian farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry.This work was funded by the Max Planck Society and the German Archaeological Institute (DAI). C.C.W. was funded by Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302) and the Fundamental Research Funds for the Central Universities. 该研究由德国马普学会、德国考古所、厦门大学南强青年拔尖人才支持计划资助
Genetic landscape of pediatric acute liver failure of indeterminate origin.
BACKGROUND AIMS
Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition.
METHODS
With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed.
RESULTS
In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants.
CONCLUSION
This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics
Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions
Archaeogenetic studies have described the formation of Eurasian 'steppe ancestry' as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4 th millennium BCE that subsequently facilitated the advance of pastoral societies in Eurasia. Here we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The northern Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting human movement across the mountain range during the Bronze Age. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry
Genetic landscape of pediatric acute liver failure of indeterminate origin
BACKGROUND AND AIMS: Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS: With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS: In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS: This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics
Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa
West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe
Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications
This work was supported by a restricted research grant of Bayer AG
- …