33 research outputs found
Sloan/Johnson-Cousins/2MASS Color Transformations for Cool-Stars
We present multi-color transformations and photometric parallaxes for a
sample of 40 low mass dwarfs selected from the Sloan Digital Sky Survey (SDSS)
and the General Catalog of Trigonometric Stellar Parallaxes. Our sample was
re-observed at the Manastash Ridge Observatory (MRO) using both Sloan and
Johnson-Cousin filters and color transformations between the two photometric
systems were derived. A subset of the sample had previously measured
Johnson-Cousins photometry and parallaxes as well as 2MASS photometry. We
observed these stars at MRO using Sloan filters and used these data to derive
photometric parallax relations as well as SDSS/Johnson-Cousins/2MASS color
transformations. We present the data and derived transformations for use in
future low mass star studies.Comment: 7 pages, Accepted for publication in PAS
First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun
Various solar features can be seen on maps of the Sun in the mm and sub-mm
wavelength range. The recently installed Atacama Large Millimeter/submillimeter
Array (ALMA) is capable of observing the Sun in that wavelength range with an
unprecedented spatial, temporal and spectral resolution. To interpret solar
observations with ALMA the first important step is to compare ALMA maps with
simultaneous images of the Sun recorded in other spectral ranges. First we
identify different structures in the solar atmosphere seen in the optical, IR
and EUV parts of the spectrum (quiet Sun (QS), active regions (AR), prominences
on the disc, magnetic inversion lines (IL), coronal holes (CH) and coronal
bright points (CBPs)) in a full disc solar ALMA image. The second aim is to
measure the intensities (brightness temperatures) of those structures and
compare them with the corresponding QS level. A full disc solar image at 1.21
mm obtained on December 18, 2015 during a CSV-EOC campaign with ALMA is
calibrated and compared with full disc solar images from the same day in
H\alpha, in He I 1083 nm core, and with SDO images (AIA at 170 nm, 30.4 nm,
21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures
of various structures are determined by averaging over corresponding regions of
interest in the ALMA image. Positions of the QS, ARs, prominences on the disc,
ILs, CHs and CBPs are identified in the ALMA image. At 1.21 mm ARs appear as
bright areas (but sunspots are dark), while prominences on the disc and CHs are
not discernible from the QS background, although having slightly less intensity
than surrounding QS regions. ILs appear as large, elongated dark structures and
CBPs correspond to ALMA bright points. These results are in general agreement
with sparse earlier measurements at similar wavelengths. The identification of
CBPs represents the most important new result.Comment: 9 pages, 3 figure
Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging
Observations of the Sun at millimeter and submillimeter wavelengths offer a
unique probe into the structure, dynamics, and heating of the chromosphere; the
structure of sunspots; the formation and eruption of prominences and filaments;
and energetic phenomena such as jets and flares. High-resolution observations
of the Sun at millimeter and submillimeter wavelengths are challenging due to
the intense, extended, low- contrast, and dynamic nature of emission from the
quiet Sun, and the extremely intense and variable nature of emissions
associated with energetic phenomena. The Atacama Large Millimeter/submillimeter
Array (ALMA) was designed with solar observations in mind. The requirements for
solar observations are significantly different from observations of sidereal
sources and special measures are necessary to successfully carry out this type
of observations. We describe the commissioning efforts that enable the use of
two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for
continuum interferometric-imaging observations of the Sun with ALMA. Examples
of high-resolution synthesized images obtained using the newly commissioned
modes during the solar commissioning campaign held in December 2015 are
presented. Although only 30 of the eventual 66 ALMA antennas were used for the
campaign, the solar images synthesized from the ALMA commissioning data reveal
new features of the solar atmosphere that demonstrate the potential power of
ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning
efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic
Observing the Sun with the Atacama Large Millimeter-submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping
The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has
commenced science observations of the Sun starting in late 2016. Since the Sun
is much larger than the field of view of individual ALMA dishes, the ALMA
interferometer is unable to measure the background level of solar emission when
observing the solar disk. The absolute temperature scale is a critical
measurement for much of ALMA solar science, including the understanding of
energy transfer through the solar atmosphere, the properties of prominences,
and the study of shock heating in the chromosphere. In order to provide an
absolute temperature scale, ALMA solar observing will take advantage of the
remarkable fast-scanning capabilities of the ALMA 12m dishes to make
single-dish maps of the full Sun. This article reports on the results of an
extensive commissioning effort to optimize the mapping procedure, and it
describes the nature of the resulting data. Amplitude calibration is discussed
in detail: a path that utilizes the two loads in the ALMA calibration system as
well as sky measurements is described and applied to commissioning data.
Inspection of a large number of single-dish datasets shows significant
variation in the resulting temperatures, and based on the temperature
distributions we derive quiet-Sun values at disk center of 7300 K at lambda=3
mm and 5900 K at lambda=1.3 mm. These values have statistical uncertainties of
order 100 K, but systematic uncertainties in the temperature scale that may be
significantly larger. Example images are presented from two periods with very
different levels of solar activity. At a resolution of order 25 arcsec, the 1.3
mm wavelength images show temperatures on the disk that vary over about a 2000
K range.Comment: Solar Physics, accepted: 24 pages, 13 figure
Defining the Middle Corona
International audienceAbstract The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there
Temporal migration rates affect the genetic structure of populations in the biennial Erysimum mediohispanicum with reproductive asynchrony
Funding was provided by projects CGL2009-07487/BOS and CGL2016-77720-P (AEI/FEDER, UE) to F.X.P., by the Impact Fellow programme from the University of Stirling to M.A. and by the Portuguese Foundation for Science and Technology (SFRH/BPD/111015/2015) to A.J.M.-P.We are grateful to Armando Caballero, Juan Pedro MartĂnez
Camacho, Mario Vallejo-Marin, Mohammed Bakkali, Robin
S. Waples, Xavier Thibert-Plante and Antonio Castilla for their
comments and discussions on a previous draft of the manuscript.
Esperanza Manzano, Leticia AyllĂłn and RocĂo GĂłmez assisted in
the laboratory. The EVOFLOR discussion group stimulated the
development of this study. We thank the Sierra Nevada National
Park headquarters for the permits and the support during our
samplings in the field. We thank Bioportal at the University
of Oslo and Residencia de Estudiantes de la Universidad de
Zaragoza in Jaca for logistic support. We also thank the staff of
the laboratory of molecular ecology (LEM) of the EBD-CSIC for
assistance.Migration is a process with important implications for the genetic structure of populations. However, there is an aspect of migration seldom investigated in plants: migration between temporally isolated groups of individuals within the same geographic population. The genetic implications of temporal migration can be particularly relevant for semelparous organisms, which are those that reproduce only once in a lifetime after a certain period of growth. In this case, reproductive asynchrony in individuals of the same population generates demes of individuals differing in their developmental stage (non-reproductive and reproductive). These demes are connected by temporal migrants, that is, individuals that become annually asynchronous with respect to the rest of individuals of their same deme. Here, we investigated the extent of temporal migration and its effects on temporal genetic structure in the biennial plant Erysimum mediohispanicum. To this end, we conducted two independent complementary approaches. First, we empirically estimated temporal migration rates and temporal genetic structure in four populations of E. mediohispanicum during three consecutive years using nuclear microsatellites markers. Second, we developed a demographic genetic simulation model to assess genetic structure for different migration scenarios differing in temporal migration rates and their occurrence probabilities. We hypothesized that genetic structure decreased with increasing temporal migration rates due to the homogenizing effect of migration. Empirical and modelling results were consistent and indicated a U-shape relationship between genetic structure and temporal migration rates. Overall, they indicated the existence of temporal genetic structure and that such genetic structure indeed decreased with increasing temporal migration rates. However, genetic structure increased again at high temporal migration rates. The results shed light into the effects of reproductive asynchrony on important population genetic parameters. Our study contributes to unravel the complexity of some processes that may account for genetic diversity and genetic structure of natural populations.AEI/FEDER, UE
CGL2009-07487/BOS
CGL2016-77720-PImpact Fellow programme from the University of StirlingPortuguese Foundation for Science and Technology
SFRH/BPD/111015/201
Evaluation of third trimester uterine artery flow velocity indices in relationship to perinatal complications.
Objective. Uterine artery Doppler is becoming a routine part of pregnancy surveillance in high-risk pregnancies. Which blood flow velocity waveform index to measure is debated and the 'notch' in early diastole is not widely accepted, as it is a subjective measure. The aim of the present study was to evaluate the different indices in the prediction of adverse outcome of pregnancies suspected for intrauterine fetal growth restriction (IUGR). Methods. Uterine artery blood flow was recorded in 217 pregnancies admitted for Doppler ultrasound surveillance due to suspected IUGR. The median gestational age at examination was 38 weeks (range 25-42 weeks). Only cases having bilateral uterine artery notching were included in the evaluation. The uterine artery Doppler spectrum was analyzed for different indices, including evaluation of notch and end-diastolic velocities. Umbilical artery Doppler velocimetry was also performed. The outcome variables chosen were: a small-for-gestational-age (SGA) newborn, preterm birth, and abdominal delivery. ROC-curve calculations were used to compare the different indices. Results. The uterine artery blood velocity pulsatility index (PI) and resistance indices (RI) were the best predictors of adverse outcome of pregnancy. Apart from premature birth, the systolic/end-diastolic ratio was less predictive of adverse outcome. The indices including only diastolic blood velocities were the least predictive of adverse outcome. The group with notch velocity above end-diastolic velocity was compared with those having notch velocity below the end-diastolic velocity. No difference in outcome was seen between the two groups. Conclusions. RI and PI as measures of third trimester utero-placental vascular impedance are the best predictors of adverse outcome of IUGR-suspected pregnancies