608 research outputs found

    How does dense phase CO2 influence the phase behaviour of block copolymers synthesised by dispersion polymerisation?

    Get PDF
    Block copolymers synthesised in supercritical CO2 dispersion undergo in situ self-assembly which can result in a range of nanostructured microparticles. However, our previous study revealed that copolymers with different block combinations possessed different microphase separated morphologies at identical block volume fractions. In this paper, we follow up those initial observations. By examining the phase behaviour of a selection of structurally diverse block copolymers, we explore the structural factors which influence the conflicting self-assembly behaviours. The composition dependence of the morphology is found to be strongly related to the CO2-philicity of the second block relative to poly(methyl methacrylate) (PMMA). Whilst PMMA-b-poly(benzyl methacrylate) (PBzMA) and PMMA-b-poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) phase behaviour follows traditional diblock copolymer phase diagrams, PMMA-b-poly(styrene) (PS) and PMMA-b-poly(4-vinyl pyridine) (P4VP), which comprise blocks with the greatest contrast in CO2-philicity, self-assemble into unexpected morphologies at several different block volume fractions. The morphology of these copolymers in the microparticulate form was found to revert to the predicted equilibrium morphology when the microparticles were re-cast as films and thermally annealed. These findings provide strong evidence that CO2 acts as a block-selective solvent during synthesis. The CO2-selectivity was exploited to fabricate various kinetically trapped non-lamellar morphologies in symmetrical PMMA-b-PS copolymers by tuning the ratio of polymer:CO2. Our data demonstrate that CO2 can be exploited as a facile process modification to control the self-assembly of block copolymers within particles

    A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

    Get PDF
    An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range

    Alpha-1 antitrypsin mitigates the inhibition of airway epithelial cell repair by neutrophil elastase

    Get PDF
    Copyright © 2016 by the American Thoracic Society. Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epitheliumis prevented byuninhibitedNE.However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aimof this studywas to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (a1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAEC non-CF and pAEC CF , respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAEC CF wound repair was also assessed.We report that viability after 48 hours was significantly decreased by 100 nM NE in pAEC non-CF and pAEC CF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≄50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAEC CF , but this effect was reversed by the addition of a1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases inthe airway contribute directly toCF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail

    Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice

    Full text link
    Motivated by the large strain shear of loose granular materials we introduced a model which consists of consecutive optimization and restructuring steps leading to a self organization of a density field. The extensive connections to other models of statistical phyics are discussed. We investigate our model on a hierarchical lattice which allows an exact asymptotic renormalization treatment. A surprisingly close analogy is observed between the simulation results on the regular and the hierarchical lattices. The dynamics is characterized by the breakdown of ergodicity, by unusual system size effects in the development of the average density as well as by the age distribution, the latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also: cond-mat/020920

    Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size

    Get PDF
    The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. We have systematically calculated the optimized geometries of neutral and singly charged magnesium clusters consisting of up to 21 atoms, electronic shell closures, binding energies per atom, ionization potentials and the gap between the highest occupied and the lowest unoccupied molecular orbitals. We have investigated the transition to the hcp structure and metallic evolution of the magnesium clusters, as well as the stability of linear chains and rings of magnesium atoms. The results obtained are compared with the available experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Efficient Hydrogen Evolution from Dimethylamine Borane, Ammonia Borane and Sodium Borohydride Catalyzed by Ruthenium and Platinum Nanoparticles Stabilized by an Amine Modified Polymer Immobilized Ionic Liquid: a Comparative Study

    Get PDF
    Platinum and ruthenium nanoparticles stabilised by an amine modified polymer immobilised ionic liquid (MNP@NH2-PEGPIILS, M = Pt, Ru) catalyse the hydrolytic liberation of hydrogen from dimethylamine borane (DMAB), ammonia borane (AB) and NaBH4 under mild conditions. While RuNP@NH2-PEGPIILS and PtNP@NH2-PEGPIILS catalyse the hydrolytic evolution of hydrogen from NaBH4 with comparable initial TOFs of 6,250 molesH2.molcat−1.h−1 and 5,900 molesH2.molcat−1.h−1, respectively, based on the total metal content, RuNP@NH2-PEGPIILS is a markedly more efficient catalyst for the dehydrogenation of DMAB and AB than its platinum counterpart, as RuNP@NH2-PEGPIILS gave initial TOFs of 8,300 molesH2.molcat−1.h−1 and 21,200 molesH2.molcat−1.h−1, respectively, compared with 3,050 molesH2.molcat−1.h−1 and 8,500 molesH2.molcat−1.h−1, respectively, for PtNP@NH2-PEGPIILS. Gratifyingly, for each substrate tested RuNP@NH2-PEGPIILS and PtNP@NH2-PEGPIILS were markedly more active than commercial 5wt % Ru/C and 5wt% Pt/C, respectively. The apparent activation energies of 55.7 kJ mol−1 and 27.9 kJ mol−1 for the catalytic hydrolysis of DMAB and AB, respectively, with RuNP@NH2-PEGPIILS are significantly lower than the respective activation energies of 74.6 kJ mol−1 and 35.7 kJ mol−1 for its platinum counterpart, commensurate with the markedly higher initial rates obtained with the RuNPs. In comparison, the apparent activation energies of 44.1 kJ mol−1 and 46.5 kJ mol−1, for the hydrolysis NaBH4 reflect the similar initial TOFs obtained for both catalysts. The difference in apparent activation energies for the hydrolysis of DMAB compared with AB also reflect the higher rates of hydrolysis for the latter. Stability and reuse studies revealed that RuNP@NH2-PEGPIILS recycled efficiently as high conversions for the hydrolysis of DMAB were maintained across five runs with the catalyst retaining 97% of its activity

    Genetic characterisation of Escherichia coli RecN protein as a member of SMC family of proteins

    Get PDF
    YesThe proteins of SMC family are characterised by having Walker A and B sites. The Escherichia coli RecN protein is a prokaryotic member of SMC family that involved in the induced excision of Tn10 and the repair of the DNA double strand breaks. In this work, the Walker A nucleotide binding site of the E. coli RecN protein was mutated by changing the highly conserved lysine residue 35 to the aspartic acid (D), designated as recN(K35D). Reverse genetics was utilized to delete the entire recN gene (Delta recN108) or introduce the recN(K35D) gene into the E. coli chromosomal DNA. The recN(K35D) cells showed decreasing in the frequency of excision of Tn10 from gal7
    • 

    corecore