464 research outputs found

    Cellular Transport and Membrane Dynamics of the Glycine Receptor

    Get PDF
    Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism

    Auswirkungen des Off Pump Coronary Artery Bypass Grafting (OPCAB) auf die Kontraktilität des Herzmuskels : ein Vergleich mit der Schädigung durch die extrakorporale Zirkulation am Tiermodell

    Get PDF
    ZIELSETZUNG: In heutiger Zeit beobachtet man in allen Bereichen der Chirurgie den Trend zu weniger traumatischen Operationen im Sinne einer minimalinvasiven Chirurgie. In der Herzchirurgie ist eines dieser Verfahren die OPCAB-Methode, eine Bypassoperation ohne Einsatz der Herz-Lungen-Maschine (off pump coronary artery grafting). Um eventuelle Vorteile dieser Methode auf die Kontraktilität des Herzmuskels zu untersuchen, wurde sie mit einer Bypassoperation unter Verwendung der extrakorporalen Zirkulation verglichen. Dazu wurde ein Leitfähigkeitskatheter verwendet, welcher die linksventrikuläre Funktion mit Hilfe von Druck-Volumen-Beziehungen vor und nach der Operation erfassen kann. METHODEN: 34 Yorkshire Duroc Schweine wurden sternotomiert und anschließend der jeweiligen OP-Methode zugeführt. Der Leitfähigkeitskatheter wurde in den linken Ventrikel eingeführt. Die Kontraktilitätsparameter wurden prä- und postoperativ gemessen. Eine Gruppe (n=11) wurde für eine Stunde einer normothermen extrakorporalen Zirkulation ausgesetzt. Eine zweite Gruppe (n=8) wurde nach der OPCAB-Methode operiert. Die dritte Gruppe (n=15) diente als Kontrollgruppe ohne Operation und extrakorporale Zirkulation. ERGEBNISSE: In der EKZ-Gruppe zeigt sich postoperativ bei allen bestimmten Kontraktilitätsparametern (ESPVR [p=0,01], dP/dt max [p<0,0001] & EF [p<0,0002]) ein signifikanter Kontraktilitätsverlust des Herzmuskels. Hinzu kommt ein signifikanter Abfall des Herzindex [p=0,0004]. In der OPCAB-Gruppe ist kein signifikanter Unterschied bezüglich der ESPVR [p=0,06] sowie der EF [p<0,65] nachzuweisen. Ebenso kommt es nicht zu einem Abfall des Herzindex [p=0,34]. Nicht ganz eindeutig stellt sich in unseren Versuchen das Ergebnis von dP/dt max [p=0,02] dar. Es zeigt einen signifikanten Unterschied, obwohl dieser von der ESPVR sowie der EF nicht wiedergegeben wird. Im intraoperativen Vergleich zeichnet sich insgesamt ein signifikanter Abfall der Herzmuskelkontraktilität während des Anlegens der Anastomose ab. In der Kontrollgruppe ist bei keinem der bestimmten Parameter im prä- und postoperativen Vergleich eine Änderung nachzuweisen (ESPVR [p=0,94], dP/dt max [p=0,75], EF [p=0,65], CI [p=0,78]). SCHLUSSFOLGERUNG: Der Einsatz der extrakorporalen Zirkulation führt zu einer signifikanten postoperativen Einschränkung der linksventrikulären Funktion. Die OPCAB-Methode führt in der sensiblen Phase des Anlegens der Gefäßanastomose ebenfalls zu einer Einschränkung der Herzmuskelkontraktilität, dennoch sind die Auswirkungen im Vergleich zur extrakorporalen Zirkulation deutlich reduziert. Im prä- /postoperativen Vergleich lässt sich kein Kontraktilitätsverlust nachweisen. Es kommt nicht zu einem Abfall der Herzleistung. Diese Studie zeigt somit einen eindeutigen Vorteil der OPCAB-Methode hinsichtlich Kontraktilität und liefert damit ein zusätzliches Argument zur weiteren Verbesserung dieser OP-Methode

    Neuroligin 1 is dynamically exchanged at postsynaptic sites

    Get PDF
    Neuroligins are postsynaptic cell adhesion molecules that associate with presynaptic neurexins. Both factors form a transsynaptic connection, mediate signaling across the synapse, specify synaptic functions, and play a role in synapse formation. Neuroligin dysfunction impairs synaptic transmission, disrupts neuronal networks, and is thought to participate in cognitive diseases. Here we report that chemical treatment designed to induce long-term potentiation or long-term depression (LTD) induces neuroligin 1/3 turnover, leading to either increased or decreased surface membrane protein levels, respectively. Despite its structural role at a crucial transsynaptic position, GFP-neuroligin 1 leaves synapses in hippocampal neurons over time with chemical LTD-induced neuroligin internalization depending on an intact microtubule cytoskeleton. Accordingly, neuroligin 1 and its binding partner postsynaptic density protein-95 (PSD-95) associate with components of the dynein motor complex and undergo retrograde cotransport with a dynein subunit. Transgenic depletion of dynein function in mice causes postsynaptic NLG1/3 and PSD-95 enrichment. In parallel, PSD lengths and spine head sizes are significantly increased, a phenotype similar to that observed upon transgenic overexpression of NLG1 (Dahlhaus et al., 2010). Moreover, application of a competitive PSD-95 peptide and neuroligin 1 C-terminal mutagenesis each specifically alter neuroligin 1 surface membrane expression and interfere with its internalization. Our data suggest the concept that synaptic plasticity regulates neuroligin turnover through active cytoskeleton transport

    Completion of neuronal remodeling prompts myelination along developing motor axon branches

    Get PDF
    Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon–glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch–specific fine-tuning mechanism that locally coordinates axon remodeling and myelination

    Absence of Whisker-Related Pattern Formation in Mice with NMDA Receptors Lacking Coincidence Detection Properties and Calcium Signaling

    Get PDF
    Precise refinement of synaptic connectivity is the result of activity-dependent mechanisms in which coincidence-dependent calcium signaling by NMDA receptors (NMDARs) under control of the voltage-dependent Mg2+ block might play a special role. In the developing rodent trigeminal system, the pattern of synaptic connections between whisker-specific inputs and their target cells in the brainstem is refined to form functionally and morphologically distinct units (barrelettes). To test the role of NMDA receptor signaling in this process, we introduced the N598R mutation into the native NR1 gene. This leads to the expression of functional NMDARs that are Mg2+ insensitive and Ca2+impermeable. Newborn mice expressing exclusively NR1 N598R-containing NMDARs do not show any whisker-related patterning in the brainstem, whereas the topographic projection of trigeminal afferents and gross brain morphology appear normal. Furthermore, the NR1 N598R mutation does not affect expression levels of NMDAR subunits and other important neurotransmitter receptors. Our results show that coincidence detection by, and/or Ca2+ permeability of, NMDARs is necessary for the development of somatotopic maps in the brainstem and suggest that highly specific signaling underlies synaptic refinement

    Completion of neuronal remodeling prompts myelination along developing motor axon branches

    Get PDF
    Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination

    Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination

    Get PDF
    Developmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-specific microtubule severing, which results in local disassembly of the microtubule cytoskeleton and loss of axonal transport in branches that will subsequently dismantle. Accordingly, pharmacological microtubule stabilization delays neuromuscular synapse elimination. This branch-specific disassembly of the cytoskeleton appears to be mediated by the microtubule-severing enzyme spastin, which is dysfunctional in some forms of upper motor neuron disease. Our results demonstrate a physiological role for a neurodegeneration-associated modulator of the cytoskeleton, reveal unexpected cell biology of branch-specific axon plasticity and underscore the mechanistic similarities of axon loss in development and disease

    Single-channel properties of glycine receptors of juvenile rat spinal motoneurones in vitro

    Get PDF
    An essential step in understanding fast synaptic transmission is to establish the activation mechanism of synaptic receptors. The purpose of this work was to extend our detailed single-channel kinetic characterization of α1β glycine channels from rat recombinant receptors to native channels from juvenile (postnatal day 12–16) rat spinal cord slices. In cell-attached patches from ventral horn neurones, 1 mm glycine elicited clusters of channel openings to a single conductance level (41 ± 1 pS, n=12). This is similar to that of recombinant heteromers. However, fewer than 1 in 100 cell-attached patches from spinal neurones contained glycine channels. Outside-out patches gave a much higher success rate, but glycine channels recorded in this configuration appeared different, in that clusters opened to three conductance levels (28 ± 2, 38 ± 1 and 46 ± 1 pS, n=7, one level per cluster, all levels being detected in each patch). Furthermore, open period properties were different for the different conductances. As a consequence of this, the only recordings suitable for kinetic analysis were the cell-attached ones. Low channel density precluded recording at glycine concentrations other than 1 mm, but the 1 mm data allowed us to estimate the fully bound gating constants by global model fitting of the ‘flip’ mechanism of Burzomato and co-workers. Our results suggest that glycine receptors on ventral horn neurones in the juvenile rat are heteromers and have fast gating, similar to that of recombinant α1β receptors

    The effects of midazolam and sevoflurane on the GABAA receptors with alternatively spliced variants of the γ2 subunit

    Get PDF
    Emergence agitation after sevoflurane anesthesia in children can be prevented by midazolam. Alternative splicing of the GABA(A) receptor changes with age. Therefore, we hypothesized that alternative splicing of the &gamma;2 subunit affects the GABA current when applying sevoflurane and midazolam
    corecore