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SUMMARY  1 

Postnatal motor neurons undergo extensive competitive remodeling and synchronously myelinate. 2 

Wang et al. now reveal that axon remodeling and myelination intersect: While myelination does not 3 

predetermine competition outcome, completing remodeling allows myelination to accelerate . This 4 

involves cytoskeletal maturation, which enables increased delivery of pro-myelinating signals. 5 

 6 

ABSTRACT 7 

Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. 8 

How they influence each other remains largely unknown, even though their coordinated execution is 9 

critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear, whether 10 

myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays 11 

myelination. By modulating synaptic transmission, cytoskeletal dynamics and axonal transport in mouse 12 

motor axons, we show that local axon remodeling delays myelination onset and node formation. 13 

Conversely, glial differentiation does not determine outcome of axon remodeling. Delayed myelination is 14 

not due to a limited supply of structural components of the axon-glial unit, but rather triggered by 15 

increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of 16 

pro-myelinating signals is regulated via local cytoskeletal maturation related to activity-dependent 17 

competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates 18 

axon remodeling and myelination.   19 

INTRODUCTION  20 

Myelin enables saltatory conduction and provides trophic support to the sheathed axons (Huxley and 21 

Stämpeli, 1949; Vabnick and Shrager, 1998; Yin et al., 2006; Simons and Trotter, 2007; Nave, 2010). In 22 
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addition, recent observations in the central nervous system (CNS) indicate that myelin contributes to fine-23 

tuning of neural circuits (Fields, 2015; Chang et al., 2016; Kaller et al., 2017). For instance, myelin sheaths 24 

and nodes of Ranvier — ion channel-enriched axon segments interspersed between myelin sheaths — 25 

show activity-dependent plasticity (Huff et al., 2011; Gibson et al., 2014; Mensch et al., 2015; Etxeberria 26 

et al., 2016; Korrell et al., 2019; Bacmeister et al., 2020) that e.g. appear to shape ‘patchy’ myelination 27 

patterns in neocortex (Tomassy et al., 2014). While activity-regulated myelination is less studied in the 28 

peripheral nervous system (PNS, Stevens and Fields, 2000; Fields, 2015), in the PNS, the axon-glial unit is 29 

more accessible than in the CNS, and the signaling pathways governing peripheral myelination are better 30 

understood (Taveggia et al., 2010; Pereira et al., 2012; Grigoryan and Birchmeier, 2015) . Thus, PNS 31 

development offers a privileged window into the intersection of axonal remodeling and myelin plasticity.  32 

To capitalize on these advantages, we turned to a major site of PNS remodeling, the neuromuscular 33 

junction (NMJ). At mouse NMJs, axonal remodeling follows a predictable course during the first two 34 

postnatal weeks and can be followed at the single axon branch level (Lichtman and Sanes, 2003; Walsh 35 

and Lichtman, 2003). At birth, multiple motor axon branches innervate the same postsynaptic site (Tapia 36 

et al., 2012). Subsequently all but one of these presynaptic inputs are eliminated by a two-step process 37 

that first involves activity-driven competition and then axon branch removal by cytoskeletal degradation 38 

(Buffelli et al., 2003; Brill et al., 2016), until lifelong innervation by a single axon is established (Tapia and 39 

Lichtman, 2012). Already during embryonic development, Schwann cells (SCs)—the glia of the PNS—40 

surround growing motor axons and accompany them to the target muscle (Jessen and Mirsky, 2005). SCs 41 

initiate myelination perinatally, after SCs have been sorted to sheath individual axon branches (Jessen and 42 

Mirsky, 2005; Monk et al., 2015; Rasband and Peles, 2016). Overall, myelination follows a proximal-to-43 

distal gradient along motor axons with myelination of terminal branches occurring last and asynchronously 44 

(Hildebrand et al., 1994; Yamamoto et al., 1996). This temporal correlation between axon-glial 45 

differentiation and cessation of developmental axon plasticity is a general feature across the nervous 46 
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system, and in the CNS can e.g. be observed in visual cortex (Luo and O’Leary, 2005; McGee et al., 2005; 47 

Simons and Trotter, 2007). In the PNS, myelination onset is determined by the level of Neuregulin-1 (Nrg1) 48 

type III on the axonal surface. Nrg1 binds to glial ErbB2/3 receptors on SCs, leading to phosphorylation of 49 

down-stream effectors, such as ERK1/2 and AKT (Garratt et al., 2000; Michailov et al., 2004; Taveggia et 50 

al., 2005; Iwakura and Nawa, 2013; Basak et al., 2015). While Nrg1 signaling is known to affect synapse 51 

development, the underlying signaling takes place at the NMJ itself, involving ‘terminal’ non-myelinating 52 

SCs, rather than myelinating SCs along the axon (Loeb, 2003; Hayworth et al., 2006; Lee et al., 2016). Thus, 53 

whether the timing of branch-specific myelination also depends on local availability of Nrg1, and whether 54 

Nrg1 signaling is locally regulated to coordinate axon remodeling and myelination remains to be elucidated. 55 

Hence, using the NMJ as a model, we asked: How are axonal competition and axon-glial differentiation 56 

coordinated at the single-branch level, and what is the signaling mechanism involved?  57 

RESULTS 58 

Axon-glial differentiation is delayed on branches engaged in remodeling 59 

To study the intersection of axon remodeling and myelination, we took advantage of a thoracic nerve-60 

muscle explant, including the triangularis sterni muscle, which is uniquely suited to study the cell biological 61 

dynamics of single axon branches (Kerschensteiner et al., 2008; Brill et al., 2013; Fig. 1 A). During the 62 

second postnatal week, most NMJs transition from double to single innervation (abbreviated in the figures 63 

as ‘din’ and ‘sin’, respectively), while myelin and nodes of Ranvier appear on terminal branches (Fig. 1 B). 64 

On three postnatal days (P7, 9 and 11), we quantified the number of NMJs still engaged in synaptic 65 

competition using triangularis sterni muscles derived from Thy1-XFP mice, where motor axons are 66 

fluorescently labeled (Feng et al., 2000; Fig. 1, C and D). In parallel, we determined the state of axon-glial 67 

differentiation on singly innervating terminal branches based on the presence of immunostained Caspr1 68 

(contactin-associated protein 1; Rasband and Peles, 2016) accumulations along a given terminal branch.  69 
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We did not distinguish further between fully formed nodes (paranodes on both sides) and partially formed 70 

heminodes, resulting in a binary score (Caspr+ vs. Caspr- terminal branches; Fig. 1, C and D). We observed 71 

a concomitant resolution of synaptic competition (i.e. decreasing percentage of doubly innervated 72 

synapses) and increasing paranodal formation on ‘winner’ branches (Fig. 1 D). Finally at P13, all NMJs 73 

established single innervation (100 ± 0%, n = 3 mice, 100 NMJs per animal) and all terminal branches 74 

started to form paranodes (100 ± 0%, n = 3 mice, 30 NMJs per animal). Next, we immunostained for myelin 75 

and other nodal components in Thy1-XFP mice at P9. In parallel to Caspr, nodal (voltage-gated sodium 76 

channel, Nav), juxta-paranodal (contactin-2, CNTN2), and internodal (myelin protein zero, MPZ) markers 77 

emerged on terminal branches (Fig. 1, E and F; Doyle and Colman, 1993). Thus,  as myelin and nodal 78 

compartments co-assemble rapidly (Girault and Peles, 2002; Schafer et al., 2006), we used Caspr 79 

immunostaining as a surrogate for overall axon-glial differentiation. Notably, when we focused on the 80 

branches still engaged in competition, we found significantly fewer branches immuno-positive for 81 

emerging nodal structures, resulting in an overall delay of axon-glial differentiation of roughly two days 82 

(~33% of the full 6-day myelination period) compared to their winner siblings. This finding was consistent 83 

across all markers tested (Fig. 1 F). Thus, ongoing competition, and hence sustained plasticity, of terminal 84 

axon branches coincides with a transient stall of myelination and node formation. We considered two 85 

explanations for this delay: (1) Slower assembly of structural components of the axon-glial unit, or (2) 86 

reduced pro-myelinating signals. To disambiguate these scenarios, we analyzed the dynamics of node 87 

formation during axonal remodeling. 88 

Axon remodeling delays initiation, not progress of axon-glial differentiation 89 

To measure the progress of axon remodeling, as well as the onset of node formation on individual 90 

motor axon branches, we characterized transgenic mice expressing GFP-tagged Caspr (Caspr-GFP; Fig. S1; 91 

Brivio et al., 2017) and generated mice expressing the β1 subunit of the voltage-gated sodium channel 92 
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tagged with GFP (β1-Nav-GFP; Fig. S1), both under control of the Thy1 promotor. In both lines, progress of 93 

synapse elimination and onset of node formation were unchanged compared to wild-type littermates at 94 

P9 (Fig. S1 legend). We assessed the paranodal/nodal protein dynamics by fluorescence recovery after 95 

photobleaching (FRAP, see Methods), and related the recovery rate to axonal competition status in β1-96 

Nav- or Caspr-GFP crossed to Thy1-OFP3 mice (Brill et al., 2011). GFP-positive clusters forming heminodes 97 

were photo-bleached to approximately one third of their original fluorescence intensity (33 ± 3%, n = 135 98 

nodes in 46 mice) and visualized again three hours later. The recovery was normalized to non-bleached 99 

control nodes in the same field of view to account for imaging-related fluorescence loss (Fig. 2, A and C). 100 

Surprisingly, at P9-11 we found significantly higher recovery rates of β1-Nav- or Caspr-GFP on competing 101 

doubly innervating branches compared to singly innervating ones (Fig. 2, B and D) — suggesting that once 102 

initiated, node formation progressed swiftly. We also found an age dependent decline (Rios et al., 2000): 103 

Recently established nodal structures recover much faster than mature ones (‘sin’ P9-11 vs. ‘sin’ 6wk; 104 

Caspr-GFP ~4.3 fold; β1-Nav-GFP ~4.4 fold; Zhang et al., 2012). At the same time, P9-11 nodes in proximal 105 

positions (‘stem’; Fig. 2, B and D) resembled distal mature (i.e. 6wk) nodes, consistent with the known 106 

myelination gradient (Hildebrand et al., 1994). Hence, our data favor a mechanism where axonal 107 

competition delays initiation, but not progress of axon-glial maturation. However, myelination and node 108 

formation are still initiated on a subset of competing, doubly innervating axon branches (cf. Fig. 1 F). Thus 109 

we wondered, whether disparate progress of axon-glial maturation influences the competition outcome.  110 

Axon-glial maturation does not convey an advantage in synaptic competition 111 

To address the effect of a branch’s axon-glial maturation status on competition, we related initiation of 112 

node formation to synaptic territory (i.e. the fraction of an NMJ that a terminal branch innervates). 113 

Synaptic territory is a well-established indicator of probable competition outcome (Gan and Lichtman, 114 

1998; Walsh and Lichtman, 2003; Brill et al., 2016). We determined synaptic territory using the ‘Brainbow’ 115 
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approach to individually color motor units (ChAT-Cre x Thy1-Brainbow-1.1; Fig. 3 A; Livet et al., 2007; Rossi 116 

et al., 2011) and immunostained for Caspr to reveal node formation along terminal branches at P9. 117 

Throughout all stages of axonal competition (1-99% territory), less than ~20% of the branches were Caspr-118 

positive, and there was no correlation of myelination onset to synaptic territory (Fig. 3 B). However, once 119 

competition was resolved, Caspr was present on ~50% of the singly innervating terminal branches (100% 120 

territory; χ2 test, 1-99% vs. 100%, p < 0.0001, n = 749 axon branches in 45 mice; Fig. 3 B), suggesting a swift 121 

lift of the brake on axon-glial differentiation once competition was resolved. This lack of correlation 122 

contrasts with other cell biological features of terminal branches, e.g. cytoskeletal stability, organelle 123 

transport or caliber, which are highly correlated to synaptic territory (Keller-Peck et al., 2001; Brill et al., 124 

2016). Moreover, the measured distribution of node formation patterns on competing axons, e.g. the 125 

fraction of NMJs where node formation had started on the winning (51-99% territory), the losing (1 – 49% 126 

territory), or neither of the competing branches, matched a random binomial distribution (14% ‘din’ 127 

myelinated across 1-99% territory, n = 520 ‘din’ NMJs in 35 mice; Fig. 3 C). This, however, does not rule 128 

out caliber as a central driver of node formation onset, as known for other PNS settings, where 1 µm 129 

represents a critical threshold for myelination (Voyvodic, 1989; Peters et al., 1991). Therefore we analyzed 130 

the diameter of competing branches with or without emerging nodes (Fig. 3 D), and found no difference 131 

between the groups during all stages of competition. We even found—albeit rarely—partially myelinated 132 

axon branches that lost against a non-myelinated competitor (Fig. 3, F and G). Only in retreating branches 133 

were the pruning axons with emerging nodes significantly thicker than their unmyelinated counterparts 134 

(Fig. 3 D), possibly due to the protective effect of myelin on axonal structures, as axon stretches covered 135 

by MPZ are significantly thicker than MPZ negative stretches along the same retreating branches (Fig. 3 E; 136 

Nave, 2010). Hence, axon-glial differentiation neither decides competition, nor prohibits axon pruning (cf. 137 

McGee et al., 2005). Together, the data suggest a unidirectional relationship, with ongoing axon 138 

remodeling delaying axon-glial maturation, but not the converse. Next, we wanted to test which phase of 139 
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synapse remodeling impacted axon-glial maturation to narrow down possible underlying signaling 140 

mechanisms.  141 

Suspending competition, but not late branch removal, delays axon branch myelination 142 

Synapse remodeling can be divided into several phases (Kano and Hashimoto, 2009; Turney and 143 

Lichtman, 2012), with an early activity-dependent competition phase driven by neurotransmission (Buffelli 144 

et al., 2003), followed by a late execution phase involving cytoskeletal break-down and glial engulfment 145 

(Bishop et al., 2004; Brill et al., 2016). First, we intervened during competition by irreversibly blocking 146 

postsynaptic acetylcholine receptors (AChRs) using unilateral thoracic injection of α-bungarotoxin (BTX, 147 

Akaaboune et al., 1999; Kummer et al., 2004) of P7 Thy1-XFP mice (Fig. 4 A). Paired analysis on contra- vs. 148 

ipsilateral triangularis sterni muscles two days later (P9; Fig. 4, B and C) revealed that more multiple 149 

innervation was maintained after BTX injection (Fig. 4 D; Loeb et al., 2002; Buffelli et al., 2003). Notably, 150 

the number of Caspr-positive winner branches (‘sin’) was significantly reduced (Fig. 4 E), suggesting that 151 

blocking neurotransmission delays the initiation of node formation. At the same time, we neither 152 

measured a change of axonal SC number, nor of internode or terminal branch length after BTX treatment 153 

(Fig. S2, A–D). Under physiological condition, the number of SCs slightly increases as competition resolves 154 

(indicated by reduced SC length; Fig. S2, E and F). We therefore hypothesized that BTX injection maintained 155 

terminal branches in a more juvenile state. Thus, we turned to the microtubular cytoskeleton as an 156 

important indicator for axonal maturation, since microtubular mass increases as the branch gains synaptic 157 

territory (Brill et al., 2016). The initiation of myelination correlates with an increase in tubulin content (Fig. 158 

S2 G and H). Following BTX injection, microtubular mass on winner axons (‘sin’) decreased to ~60%, while 159 

competing axons (‘din’) were not affected (Fig. 4, F and G). This hints at the possibility that the delayed 160 

node formation following transmission block is due to reduced microtubular mass.  161 
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To manipulate axonal microtubules, we genetically deleted spastin, a microtubule-severing enzyme 162 

(spastin KO), where we confirmed a delay in axon branch removal  (Fig. 4, H–J; Brill et al., 2016). Indeed, 163 

loss of spastin led to accelerated node formation in competing axons (‘din’) compared to wild-type (WT; 164 

Fig. 4 K). That this represented a cell autonomous effect in motor neurons was corroborated by inducing 165 

subset deletion in conditional spastinfl/fl x TdTomato reporter mice (Brill et al., 2016) using a cre-encoding 166 

adeno-associated virus (AAV9-CMV-iCre; Fig. S3). While we again found delayed axon remodeling  (Brill et 167 

al., 2016), node formation was now accelerated on competing branches (Fig. S3 C), where TdTomato 168 

expression indicated spastin deletion. Overall, microtubular mass was increased in spastin-deleted 169 

terminal axon branches (Fig. 4, L and M; Brill et al., 2016), while axonal caliber was unaffected (Fig. S3 D), 170 

contrasting the increase in nodal formation specifically on competing branches. This suggests that the 171 

microtubular cytoskeleton is the limiting factor to initiate node formation in competing branches , but not 172 

on winner axons, perhaps arguing for a two-component system, where each can be limiting in different 173 

stages. Moreover, the divergent axon-glial differentiation outcomes of postsynaptic block vs. spastin 174 

deletion, which both delay remodeling, points to a mechanism that is blocked by ongoing activity-175 

dependent competition, but can be overcome by increasing microtubular mass. As the microtubular 176 

cytoskeleton sustains axonal transport (which requires tracks and cargoes), we next tested if reducing 177 

anterograde transport would affect local initiation of axon-glial differentiation. 178 

Local axonal transport regulates terminal branch myelination during remodeling 179 

To reduce transport in motor neurons, we overexpressed the cargo-binding domain (CBD) of kinesin-1 180 

heavy chain (KHC), a key molecular motor driving anterograde transport (Hirokawa et al., 2009). This 181 

results in a dominant-negative mutant (KHC-CBD), which still binds cargoes, but lacks the motor domain 182 

and competes with endogenous kinesin-1, thus impairing transport of organelles and nodal components 183 

in vitro (Cai et al., 2005; Barry et al., 2014). To test the efficacy of this approach in vivo, we turned to 184 
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zebrafish as an easily accessible model for assaying effects of myelination-regulating signals (Czopka and 185 

Lyons, 2011). We used the Gal4/UAS system to transiently co-express UAS-GFP-KHC-CDB and UAS-186 

mitoTagRFP-T in Rohon Beard sensory neurons, in which mitochondrial transport can be easily monitored 187 

(Plucińska et al., 2012). KHC-CBD overexpression in this system substantially reduced mitochondrial 188 

transport per minute (reduction from 0.61 ± 0.11 in control to 0.10 ± 0.02 in anterograde and 0.28 ± 0.04 189 

to 0.10 ± 0.04 in retrograde direction at 2 days post fertilization, dpf; P < 0.01, Mann-Whitney test, n ≥ 4 190 

zebrafish per group, ≥ 4 axons). We then analyzed spinal motor neurons, which start to be myelinated at 191 

3 dpf in zebrafish (D’Rozario et al., 2017). To down-regulate axonal transport while monitoring myelination 192 

progress, we expressed GFP-KHC-CBD or GFP alone under the neuronal cntn1b promoter in Tg(mbp:RFP) 193 

zebrafish, where all compacted internodes are fluorescently labelled by a membrane-targeted RFP (Auer 194 

et al., 2018; Fig. S4, A–E). On 6 dpf, axon length in Tg(mbp:RFP) zebrafish injected with cntn1b-GFP-KHC-195 

CBD was similar to controls (Fig. S4 F), but strikingly, the myelinated axon length was only half compared 196 

to controls (Fig. S4 G). This supports the notion that PNS myelination depends on axonal transport.  197 

We next probed whether this was true in murine motor axons during remodeling. In Thy1-β1-Nav-GFP 198 

animals, emerging β1-Nav-GFP clusters correlate with higher anterograde particle transport in terminal 199 

branches (Fig. 5). Among all β1-Nav-GFP positive branches, winner axons (‘sin’) had the highest 200 

anterograde transport rate (Fig. 5 B). Together, this is in line with our previous observation that 201 

microtubular mass correlates with node formation (Fig. S2 H). We then injected an AAV9 encoding KHC-202 

CBD and iCre under control of the neuronal human synapsin promoter (AAV9-hSyn-iCre-p2a-KHC-CBD) into 203 

neonatal mice (Fig. 5 A). In AAV injected Thy1-β1-Nav-GFP x TdTomato reporter mice, we found a 204 

significant reduction in β1-Nav-GFP anterograde transport, while retrograde was unaffected (Fig. 5 B). 205 

Notably, the onset of node formation was significantly delayed in reporter-positive branches compared to 206 

negative ones, which served as internal controls (Fig. 5, C and D). This points to a transport-delivered signal, 207 

which locally times the onset of axon-glial differentiation of terminal axon branches.  208 
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Local disparity of pro-myelinating factors in terminal branches correlates with competition status 209 

Nrg1 type III is a candidate for a transported pro-myelination signal, as this signaling factor locally needs 210 

to reach a critical threshold to initiate axon-glial differentiation (Taveggia et al., 2005; Nave and Salzer, 211 

2006; Birchmeier and Nave, 2008; Velanac et al., 2012) by activating downstream effectors in SCs such as 212 

ERK1/2 and AKT (Ogata et al., 2004; Taveggia et al., 2005; Basak et al., 2015; Duregotti et al., 2015). To 213 

investigate Nrg1 type III function during axon remodeling, we crossed floxed Nrg1 type III (Velanac et al., 214 

2012) to TdTomato reporter mice and injected neonates with AAV9-CMV-iCre (Fig. S3 E). As expected, 215 

myelination was severely impaired in TdTomato-positive branches compared to internal control axons (Fig. 216 

S3, F–H). We further tested if increased Nrg1 type III levels are sufficient to remove the competition-217 

dependent block on myelination employing Thy1-Nrg1 type III-HA mice, where Nrg1 type III is tagged with 218 

hemagglutinin (Fig. 6 A and B). Here axon remodeling was transiently accelerated (Lee et al., 2016), and 219 

overall nodes form significantly earlier (Fig. 6 C–F; Velanac et al., 2012). Notably the myelination delay on 220 

competing ‘din’ branches was preserved, most likely reflecting the endogenous distribution of Nrg1 type 221 

III (Fig. 6 F).  222 

To analyze local distribution of Nrg1 type III with single axon precision, we immunostained for the HA-223 

tag and visualized SCs and axons (Fig. 7, A and B). Strikingly, we detected a higher HA-signal along winner 224 

‘sin’ branches compared to competing ‘din’ axons, in line with differential trafficking regulated by 225 

competition-regulated cytoskeletal maturation (Fig. 7 C). Corroborating differential Nrg1 signaling, we 226 

measured significantly higher levels of activated forms of both ERK1/2 (pERK) and AKT (pAKT) surrounding 227 

winner ‘sin’ axons (Fig. 7, D–G). As myelination initiation on winner branches was reduced following 228 

neurotransmission blockade, HA-tagged Nrg1 type III and pERK signals also significantly decreased in ‘sin’ 229 

branches (Fig. 7, H and I). Transgenic expression of Nrg1 type III did not change the density neither area of 230 

acetylcholine receptors (Fig. 7 J and K). Therefore, Nrg1 type III likely impacts myelination via its 231 

promyelinating effects rather than by modulating postsynaptic feedback (Velanac et al., 2012; Kamezaki 232 
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et al., 2016). Indeed, the only phenotype we observed at the endplate was a premature shape change of 233 

the acetylcholine receptor distribution in Thy1-Nrg1 type III-HA mice compared to wild-type littermates 234 

(Fig. 7 L; cf. Lee et al., 2016). 235 

DISCUSSION 236 

Taken together, our data suggest that during motor axon remodeling, a pro-myelination signal—such 237 

as Nrg1—paces branch myelination, which is locally limited by axonal transport and depends on local 238 

regulation of cytoskeletal integrity. Thus, axon-glial differentiation is delayed until competition resolves 239 

and the axonal cytoskeleton matures. Notably, according to this model, axon dismantling and myelination 240 

initiation both depend on mechanisms that regulate the microtubular cytoskeleton (Brill et al., 2016). This 241 

model also links anterograde transport to a signaling function, which previously was mostly considered for 242 

retrograde transport, e.g. delivering neurotrophic factors (Je et al., 2012; Yamashita, 2019).  243 

The intersection of axon remodeling and myelination is widespread (Feinberg, 1982; Bernstein and 244 

Lichtman, 1999; Woo and Crowell, 2005; Barres, 2008) and might play a general role in the activity-245 

dependent sculpting of efficient neuronal networks (Luo and O’Leary, 2005; Tapia and Lichtman, 2012; de 246 

Hoz and Simons, 2015; Chang et al., 2016). The prevailing notion has been that myelination might 247 

terminate axonal plasticity by ‘cementing’ axons in place, thus contributing to closing the critical 248 

remodeling period (Caroni and Schwab, 1988; McGee et al., 2005; Geoffroy and Zheng, 2014; Kalish et al., 249 

2020). Indeed, we observed myelination initiation predominantly on winner axon branches (‘sin’), i.e. after 250 

competition was resolved (Fig. 1). However, while determining the exact start and progression speed of 251 

myelination is technically challenging (thus we resorted to a ‘binary’ readout of Caspr+ vs. Caspr- branches), 252 

our observations clearly reveal that competition delayed myelination, but not vice versa (Fig. 3). A subset 253 

of competing axons still initiated myelination, but this did not convey a measurable advantage during 254 

competition, as no relationship between myelination and synaptic territory was apparent in our data. Even 255 
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some retreating axons were myelinated, including in cases where the likely competing branch was not (Fig. 256 

3 G). Still, in general myelination was prevented on axon branches that were fated for removal. As myelin 257 

is an extremely stable structure (Simons and Trotter, 2007; Hughes et al., 2018), which might be 258 

metabolically ‘expensive’ to build (Nave and Trapp, 2008; Harris and Attwell, 2012) and requires a 259 

dedicated mechanism for dismantling, it seems economical to delay myelination until pruning is resolved 260 

(McGee et al., 2005; Cheng and Carr, 2007). Thus our results support a view where myelin might act as 261 

participant in, but not as the terminator of circuit plasticity (Mount and Monje, 2017; but cf. Roche et al., 262 

2014).  263 

How do competing axon branches delay myelination? A number of cell biological features of such 264 

branches scale with its synaptic territory during competition, e.g. cytoskeletal stability, organelle transport 265 

or axon caliber (Keller-Peck et al., 2001; Brill et al., 2016). We can rule out the hypothesis that axon caliber 266 

dictates myelination onset, since axon caliber did not differ between myelinated and unmyelinated 267 

competing branches (Fig. 3 D; Goebbels et al., 2010), even though we found evidence that along a given 268 

branch, myelination has an impact on local diameter (Fig. 3 E). To further probe the mechanism that times 269 

myelination onset, we manipulated activity-driven competition (Buffelli et al., 2003) using local BTX 270 

injections (Fig. 4). This intervention is muscle-specific, therefore less likely to affect axon-SC 271 

communication, compared to blocking axonal action potential conduction or acetylcholine release 272 

(Misgeld et al., 2002; Lorenzetto et al., 2009). Notably, while there exists some cholinergic axon-Schwann 273 

cell communication, this typically involves BTX-insensitive receptors (Rousse and Robitaille, 2006). In the 274 

past, chronic blockade of neuromuscular transmission, e.g. in chicken embryos treated with curare, has 275 

been shown to result in AChR cluster fragmentation and axonal sprouting (cf. Loeb et al., 2002; Loeb, 2003). 276 

Also, constitutive genetic ablation of choline acetyl transferase in motor axons leads to premature 277 

myelination in the phrenic nerve at birth (Misgeld et al., 2002). Still, these outcomes likely reflect the 278 

combination of presynaptic and sustained blockade, prone to elicit homeostatic compensation (Davis, 279 
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2013). Here, by using brief and local postsynaptic blockade, we found the expected delay in axon 280 

remodeling, but also a commensurate hiatus in myelination (Fig. 4, D and E). Thus, myelination onset 281 

appears to be part of the BTX-sensitive competition program, revealing an indirect role of 282 

neurotransmission in regulating the progress of PNS myelination (for the CNS, cf. Stevens et al., 2002; 283 

Gibson et al., 2014; Krasnow et al., 2018). Moreover, postsynaptic block induced a reduction in presynaptic 284 

microtubular mass on winner branches (Fig. 4 F and G), suggesting a silencing-induced delay in maturation, 285 

which chimes with a cytoskeletal mechanism of inducing myelination. 286 

Indeed, in terminal axon branches, the microtubular cytoskeleton matures in parallel to an increase in 287 

synaptic territory (Brill et al., 2016). Accordingly, we observed that spastin deletion, which increased 288 

microtubular mass (Fig. 4, L and M), resulted in accelerated myelination specifically on competing branches, 289 

breaking the link between remodeling and myelination delay (Fig. 4 K). However, spastin deletion in winner 290 

branches did not affect the initiation of myelination. This suggests that the limiting factor in this setting 291 

could be cargo instead of track availability, as we reported previously for mitochondria (Marahori, 2020). 292 

Since microtubular content can locally regulate axonal transport (Kapitein and Hoogenraad, 2015; Roll-293 

Mecak, 2019), hinting that myelination might depend on branch-specific transport. To test this, we 294 

expressed a dominant-negative kinesin mutant in vivo, which affects anterograde organelle delivery (Cai 295 

et al., 2005; Barry et al., 2014). In both zebrafish and mouse motor neurons this delayed myelination, 296 

despite the transport blockade being partial and short (Fig. 5 and Fig. S4). Taken together, our data suggest 297 

that in competing branches, transport of pro-myelinating cargos is restricted by an immature and 298 

increasingly severed microtubular cytoskeleton (Brill et al., 2016). 299 

Since our FRAP experiments suggest that nodal components are not limited in competing branches (Fig. 300 

2), we focused on Nrg1 type III as the putative factor determining myelination onset for the following 301 

reasons: Nrg1 signaling (1) is the master regulator of PNS myelination (Birchmeier and Nave, 2008; 302 

Grigoryan and Birchmeier, 2015); (2) acts in a threshold-based manner (Garratt et al., 2000; Michailov et 303 
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al., 2004; Taveggia et al., 2005; Nave and Salzer, 2006); (3) is steeply upregulated during the synapse 304 

remodeling period (Lee et al., 2016), while its axonal presence is limited (Velanac et al., 2012). Indeed, we 305 

demonstrated that HA-tagged Nrg1 accumulates faster on winner than on competing branches (Fig. 7 C), 306 

and down-stream pathways of Nrg1 signaling are preferentially activated in SCs around winner branches 307 

(Fig. 7, F and G). It would have further strengthened our argument if increased Nrg1 could be observed in 308 

spastin deleted axons. Likely due to chromosomal incompatibility of the Nrg1 transgene insertion site and 309 

the spastin locus, we tested the converse setting and showed that HA-tagged Nrg1 distribution and down-310 

stream signaling decrease upon BTX blockade (Fig. 7, H and I). The fact that Nrg1 overexpression 311 

accelerates both myelination and synapse elimination (Fig. 6; Lee et al., 2016) further strengthens our 312 

conclusion that myelination per se does not terminate remodeling. However, it is technically challenging 313 

to disambiguate whether Nrg1 signals directly from the axonal surface to myelinating SCs, or through a 314 

more complicated feedback via muscle and/or terminal SCs. Yet we did not measure a difference in 315 

postsynaptic acetylcholine receptor density neither area between Thy1-Nrg1 type III-HA and wild-type 316 

littermates (Fig. 7), suggesting Nrg1 likely functions via its promyelinating effects, rather than modulating 317 

muscular depolarization. 318 

In summary, our experiments reveal an intercellular signaling mechanism that regulates myelination on 319 

a branch-to-branch level in the developing PNS. The extent of branch-specific Nrg1 accumulation, and 320 

hence the strength of the pro-myelination signal, is regulated by the axonal cytoskeleton as a spatially-321 

resolved signaling hub (Janke, 2014). A similar local regulation between neuronal remodeling and 322 

myelination can be relevant in many developing neural circuits, e.g. certain cortical axon types are 323 

myelinated in a highly local fashion (Tomassy et al., 2014; Micheva et al., 2016). Moreover, when disturbed, 324 

such signaling could contribute to the disrupted timing of developmental events characteristic of some 325 

neuropsychiatric disorders, where axonal transport, neuronal remodeling and myelination all show subtle 326 

defects (Coleman and Perry, 2002; Luo and O’Leary, 2005; Mei and Nave, 2014).  327 
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MATERIALS AND METHODS 328 

Mouse lines and husbandry 329 

In all experiments, mice from both sexes were included. Animals were housed in individually ventilated 330 

cages with food and water ad libitum. All animal experiments were performed in accordance with the 331 

regulations by the local authorities, e.g. Government of Upper Bavaria. Experimental animals were kept 332 

together with littermates. 333 

Experimental mice and genotyping 334 

For labeling axons we used Thy1-XFP mice, which express OFP (Thy1-OFP3; Brill et al., 2011), YFP (Thy1-335 

YFP16; Feng et al., 2000), or membrane-RFP (Thy1-Brainbow-1.1 line M; Livet et al., 2007) under the 336 

control of the Thy1-promotor (Feng et al., 2000). For FRAP experiments and node visualization in living 337 

explants, we used Thy1-Caspr-GFP (Brivio et al., 2017) and Thy1-β1-Nav-GFP transgenic mice (generated 338 

for this study, see below) crossed to Thy1-XFP mice. Synaptic territory of competing axonal branches was 339 

defined in Thy1-Brainbow-1.1 line M mice crossed to Cre-expressing lines: CAG-CreERT (gift from Dr. J. 340 

Livet, Institut de la Vision, Paris, France) or ChAT-IRES-Cre (Jackson, #6410; Rossi et al., 2011), which leads 341 

to individual fluorescent color combinations of membrane-targeted RFP, YFP, and CFP. For the crossing 342 

involving CAG-CreERT, 20µl of 1.5 mg/ml tamoxifen was subcutaneously injected on postnatal day (P) 3 to 343 

induce expression. Delayed synapse elimination was analyzed in spastin knock-out (KO) mice (Brill et al., 344 

2016) or spastin floxed (fl/fl) mice bred to ROSA-CAG-TdTomato or YFP reporter mice (Jackson, #7914, 345 

#7903; Madisen et al., 2010) injected with AAV9-CMV-iCre (provided by Dr. Engelhardt; Brill et al., 2016). 346 

Effects of transport modulation on myelin and nodal development was observed in TdTomato reporter  347 

mice crossed to Thy1-β1-Nav-GFP or ROSA-CAG-YFP mice injected with AAV9-hSyn-iCre-p2a-KHC-CBD. 348 

Precocious myelination was investigated in Thy1-Nrg1 type III-HA mice (“HANI”, Velanac et al., 2012). To 349 
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investigate delayed nodal development, we injected AAV9-CMV-iCre into conditional Neuregulin knock-350 

out mice (Nrg1 type IIIfl/fl; Velanac et al., 2012) crossbred with ROSA-CAG-TdTomato reporter. To visualize 351 

SCs, we used Plp-GFP transgenic mice (Mallon et al., 2002). All experiments on ROSA-CAG-TdTomato 352 

reporter mice were performed in homozygous animals.  353 

Genomic DNA was extracted from tail biopsies using a one-step lysis (lysis buffer in mM: 67 Tris pH 8.8, 354 

16.6 (NH4)2SO4, 6.5 MgCl2, 5 β-mercaptoethanol, 10 % Triton and 50 µg/ml Proteinase K; incubation at 55°C 355 

for 5 hours, followed by inactivation step 5 min at 95°C). PCR was performed with GoTaq Green Master 356 

Mix (Promega, #M7121) following a standard protocol, then DNA was separated on a 1.5 - 2 % agarose gel. 357 

Genotyping primers and expected products are listed in Table S1.  358 

Generation of Thy1-β1-Nav-GFP transgenic mice 359 

Transgenic mice expressing the beta 1 subunit of the sodium channel (β1-Nav) fused to GFP at the C-360 

terminus under the control of the Thy1.2 promoter (Caroni, 1997) were generated by pronuclear injection.  361 

The β1-Nav-GFP cDNA (McEwen et al., 2009) was cloned into the blunted XhoI site of the pTSC21k vector 362 

(Lüthi et al., 1997), released using Not I (Zonta et al., 2011), and used for pronuclear injection (Sherman 363 

and Brophy, 2000).  364 

FRAP experiments and Caspr-GFP trafficking in nerve-muscle explant 365 

Nerve-muscle explants from the thorax including the triangularis sterni muscle were prepared from 366 

young (postnatal day 7 - 14) or adult mice (6 weeks; Kerschensteiner et al., 2008; Brill et al., 2011, 2016). 367 

The rib cage was isolated from euthanized animals, and the skin and pectoral muscles over the rib cage 368 

were removed. The diaphragm was cut and the thorax was released by cutting the ribs close to the 369 

vertebral column. The dissection was continued in oxygenated precooled Ringer’s solution (in mM: 125 370 

NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgCl2, 20 glucose, oxygenated with 95 % O2/ 5 % CO2) 371 

in a 10 cm dish and remnants of muscles, thymus, pleura and lung were removed. The clean nerve-muscle 372 
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explant was pinned onto a Sylgard-coated 3.5 cm dish, superfused with oxygenated Ringer’s solution,  using 373 

shortened insect pins (0.25 mm Fine Science Tools, 26001-25), exposing the triangularis sterni muscle, the 374 

intercostal nerve and terminal motor neuron branches. During imaging the explant was kept at 31-33°C 375 

with a heating ring connected to an automatic temperature controller (TC-344C, Warner Instruments) and 376 

steadily perfused with Ringer's solution. 377 

Trafficking measurements of β1-Nav-GFP particles in the terminal branches were performed with an 378 

Olympus BX51WI epifluorescence microscope equipped with ×20/0.5 N.A. and ×100/1.0 N.A. water-379 

immersion objectives, an automated filter wheel (Lambda 10-3, Sutter Instrument), a CCD camera 380 

(CoolSnap HQ2, Visitron Systems), and a GFP ET filter set (AHF Analysentechnik). All devices were 381 

controlled by μManager 1.4 (Edelstein et al., 2014). Per movie, we acquired 200 images at 1 Hz using an 382 

exposure time of 500 ms. Total imaging time on explants was restricted to maximum two hours, except 383 

for in FRAP analysis (below). 384 

For FRAP analysis, we used Thy1-Caspr-GFP and Thy1-β1-Nav-GFP mice and the same setup as 385 

described above for transport measurements. The laser (473 nm, DL-473, Rapp OptoElectronic) for 386 

photobleaching was manually focused on a labeled node of Ranvier (~ 5 µm2) and the sample was bleached 387 

for 1 - 3 seconds. We performed FRAP on branches with heminodes during deve lopment, since fully 388 

developed nodes are rare at the investigated age. In adults, all measurements were performed on fully 389 

developed nodes. The GFP signal was imaged with 800 ms exposure time before and immediately after 390 

photobleaching with a GFP/mCherry dualband ET filter set (AHF Analysentechnik), then in one -hour 391 

intervals for three hours with 800 ms exposure time.  392 

Mouse immunofluorescence and confocal microscopy 393 

The thorax was fixed in 4 % paraformaldehyde (PFA) for one hour in 0.1 M phosphate buffer (PB) on ice 394 

and the triangularis muscle was dissected and extracted (Brill et al., 2011). For HA staining, the sample was 395 
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additionally treated for 1 h at 37°C in 5 % CHAPS. The fixed thorax was incubated overnight (or 72 h for HA, 396 

pERK and pAKT) at 4°C in the respective primary antibodies diluted in blocking solution (5 % BSA, 0.5 % 397 

Triton X-100 in 0.1 M PB). To label postsynaptic nicotinic acetylcholine receptors Alexa 488-, Alexa 594-, 398 

Alexa 647- or biotin-conjugated to α-bungarotoxin (BTX; Invitrogen, B13422, B13423, B35450, B1196; 50 399 

μg/ml, 1:50) was added to the primary antibody mixture. The following primary antibodies were used in 400 

this study: anti-βIII-tubulin conjugated to Alexa 488 (BioLegend, AB_2562669; mouse IgG2a, 1:200), Alexa 401 

555 (BD Pharmingen, #560339; mouse monoclonal, 1:200), Alexa 647 (BioLegend, AB_2563609; mouse 402 

IgG2a, 1:200). For labeling of nodal components antibodies against Caspr (Abcam, AB_869934, polyclonal 403 

rabbit; 1 mg/ml 1:400), MPZ (Aves Labs combined chicken IgY, 200 µg/ml, 1:200), CNTN2 (R&D Systems, 404 

AB_2044647; polyclonal goat IgG, 1:200), pan Nav subunit α (Abgent, AG1392; polyclonal rabbit, 1.0 mg/ml, 405 

1:400). HA was stained with anti HA-tag antibody (Cell Signaling, AB_1549585; rabbit, 1:50) and 406 

phosphorylated ERK1/2 was stained with anti-phospho-p44/42 MAPK (Cell Signaling, AB_331646; rabbit, 407 

1:200). Here we used the tyramide signal amplification (TSA Cyanine 3 System, Perkin Elmer, AB_2572409). 408 

Muscles were washed in 0.1 M PB, incubated for one hour at room temperature with corresponding 409 

secondary antibodies coupled to Alexa 488, Alexa 594 or Alexa 647 (Invitrogen, rabbit: #A-11070, #A-11072, 410 

#A-21246, #A-32790; mouse: #A-11005; chicken: #A-11042; #A-21449; goat: #A-11058) and washed again 411 

in 0.1 M PB. Muscles were mounted in Vectashield (Vector Laboratories) or Fluoromont-G (Southern 412 

Biotech) and image stacks were recorded using a confocal microscope (Olympus FV1000) equipped with 413 

x20/0.8 N.A. and x60/1.42 N.A. oil-immersion objectives (Olympus). 414 

Generation of recombinant DNA 415 

In order to generate the pTREK1-hSyn-iCre-p2a-KHC-CBD construct for the AAV9-hSyn-iCre-p2a-KHC-416 

CBD production, we used the Gibson Assembly Master Mix (NEB). We recombined fragments from pEGFP-417 

C1-KHC-CBD (Cai et al., 2005), the dsCMV-iCre and the pAAV-hSyn-DIO-HA-hM3D(Gq)-IRES-mCitrine 418 

plasmid (addgene #50454) and the p2a sequence. The produced amplicon was ligated into the single -419 



20 
 

stranded AAV backbone plasmid pTREK1. The following oligonucleotides were used: 420 

AGTACTTAATACGACTCACTATAGGATGGTGCCCAAGAAG, TCCACGTCGCCGGCCTGCTTCAGCAGGGAGAAGT-421 

TGGTGGCGTCCCCATCCTCGA, TGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCCAGTGCTGAGATT-422 

GATTCT, and ATCATGTCTGGATCCTCGATAGTTTAAACTTACACTTGTTTGCCTC. 423 

For zebrafish injections, we generated pDestTol2CG2_UAS:GFP-KHC-CBD-polyA and 424 

pTol2_cntn1b:KHC-CBD-GFP vectors using the Gateway system (Thermo Fisher). To produce the middle 425 

entry clone pME_GFP-KHC-CBD,  the GFP-KHC-CBD sequence was amplified from the template plasmid 426 

(Cai et al., 2005). The PCR product was then recombined into the vector pDONR221 using BP clonase 427 

(Thermo Fisher). The final expression constructs pTol2_UAS:GFP-KHC-CBD and pTol2_cntn1b:GFP-KHC-428 

CBD were then generated in multisite LR recombination reactions with the entry clones, p5E_UAS, 429 

p5E_cntn1b, pME_GFP-KHC-CBD, p3E_pA and pDestTol2_pA of the Tol2Kit (Kwan et al., 2007). 430 

Generation of AAV9 (adeno-associated virus serotype 9) 431 

HEK293-T cells were grown in 10-tray Cell Factories (Thermo Scientific) using Dulbecco's modified 432 

essential medium (Gibco) with 10 % fetal bovine serum (Gibco) and 1 % penicillin/streptomycin (Gibco). 433 

The cells were split into the Cell Factories 24 h prior to transfection to reach 80 % confluence at the time 434 

of transfection. Then, 420 µg of the pTREK1-hSyn-iCre-p2a-KHC-CBD plasmid and 1.5 mg of the helper 435 

plasmid (pDP9rs, kindly provided by Roger Hajjar) were introduced into the HEK293-T cells using 436 

polyethylenimine (Polysciences). Three days later the cells were harvested, lysed, benzonase-treated and 437 

the virus was isolated by ultracentrifugation through an iodixanol density gradient (Optiprep, Progen). 438 

Ringer lactate buffer (Braun) was used to replace iodixanol with the help of Vivaspin 20 columns, MWCO 439 

100000 PES (Sartorius). Two 10-tray Cell Factories were pooled and concentrated to a total volume of 500 440 

µl. AAV9 titers were determined by real-time PCR using SYBR Green Master Mix (Roche). Titers in the range 441 

of 1x1014 viral genome copies per milliliter (vg/ml) were acquired. 442 
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Neonatal AAV9 or α-BTX-injection 443 

AAV9 was injected into neonatal pups according to previously published protocol (Passini and Wolfe, 444 

2001). In short, P3 pups were anaesthetized with isoflurane (Abbott) and injected with 3 µl AAV9-CMV-445 

iCre or AAV9-hSyn-iCre-p2A-KHC particles into the right lateral ventricle at a rate of 30 nl/s using a fine 446 

glass pipette (3.5” Drummond #3-000-203-G/X) attached to a nanoliter injector (Micro4 MicroSyringe 447 

Pump Controller connected with Nanoliter 2000, World Precision Instruments). All surgeries were 448 

conducted under ultrasound guidance (Vevo1100 Imaging System, with a Microscan MS550D transducer, 449 

Visualsonics). 0.05 % (wt/vol) trypan blue was added to the viral solution for visualizing the filling of the 450 

injected ventricles. Only whole litters were injected, and pups were allowed to recover on a heating mat 451 

before the litter was returned to their mother into the home cage and sacrificed on P9 for 452 

immunohistochemistry. To monitor Cre-mediated recombination, mice carried in addition to the 453 

respective genes (spastin or Nrg1 type III conditional knock-out), two TdTomato or YFP reporter alleles 454 

(homozygous), which resulted in robust expression of the reporter in a subset of motor neurons.  455 

Injection of α-BTX on P 7 was administered in a similar manner, only the needle was inserted laterally 456 

under the skin of the right thorax, and 1 µl of a 50 mg/μl Alexa 488- or 594-conjugated BTX solution 457 

(Invitrogen, B13422, B13423) was injected. The contralateral (left) triangularis sterni muscle was 458 

unaffected and used as control. The injected pups were viable and active after the treatment, and not 459 

distinguishable from untreated controls. Ipsi- and contralateral triangularis sterni muscle were then post 460 

hoc stained with Alexa 594- or 488-conjugated BTX respectively, resulting in complementing stainings for 461 

blocked and unblocked AChRs. We confirmed a substantial degree of persisting blockade at P9 (11.9 ± 4.5 462 

fold change of BTX staining on injected vs. non-injected side, n ≥ 50 NMJs in 5 mice) and the absence of 463 

denervation (> 100 NMJs per mouse, n = 3 mice).  464 
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Zebrafish injection, immunostaining and confocal imaging 465 

Fertilized Tg(mbp:RFP) eggs (Auer et al., 2018) at the one cell stage were pressure microinjected with 466 

1 nl solution containing 20 - 40 ng/μl plasmid DNA (cntn1b:GFP-KHC-CBD or control cntn1b:GFP; Auer et 467 

al., 2018)  and 25 - 50 ng/μl transposase mRNA. For immunohistochemistry,  larval zebrafish at 6 dpf were 468 

euthanized with 4 mg/ml MS-222 (PHARMAQ) and then fixed overnight in 4 % PFA in 0.1 M PB. After 469 

fixation, the samples were washed three times in PBS, 0.1 % Tween20 and then immersed for 2 hours at 470 

room temperature in blocking solution (5 % BSA, 0.5 % Triton X-100 in 0.1 M PB), then incubated in primary 471 

antibody against α-tubulin (Sigma-Aldrich, #00020911, mouse, 1:200) at 4° C for 48 hours in blocking 472 

solution. Samples were washed and incubated in secondary antibody conjugated to Alexa 647 (Invitrogen, 473 

goat-anti-mouse #A-28181) overnight at 4°C (Hunter et al., 2011). Samples were washed again and 474 

embedded in Vectashield (Vector Laboratories). Image stacks were recorded using a confocal microscope 475 

(Olympus FV1000) equipped with a x20/0.8 N.A. oil-immersion objective. 476 

To label Rohon-Beard neurons, fertilized embryos from wild-type fish were co-injected with a sensory 477 

neuron-specific Gal4 driver construct (containing enhancer elements from isl1; Sagasti et al., 478 

2005) together with UAS:KHC-CBD-GFP and UAS:mitoTagRFP-T plasmids (each at 5 ng/ul). 479 

Alternatively, UAS:KHC-CBD-GFP and UAS:mitoTagRFP-T plasmids were co-injected into fertilized eggs 480 

from the isl2b:Gal4 line (Fredj et al., 2010). At 2 dpf, embryos were anesthetized using 0.2 mg/ml MS-222 481 

(PHARMAQ) and embedded in UltraPure Low Melting Point Agarose (Thermo Fisher) on a glass coverslip. 482 

After selecting double labeled Rohon-Beard neurons, mitochondrial transport was imaged for at least 50 483 

min in the stem axon using the wide-field microscope configured as in the FRAP experiments. We acquired 484 

movies with an imaging frequency of 2 Hz and an exposure time between 200 and 500 ms for each fish 485 

(Plucińska et al., 2012).   486 
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Image processing/representation and quantification 487 

Innervation patterns was determined by counting the number of innervating terminal branches ending 488 

on each BTX stained neuromuscular junction (NMJ) in ImageJ/Fiji (Schindelin et al., 2012). The myelination 489 

status of a terminal branch (axon from last bifurcation until NMJ) was determined by any presence of 490 

clustered markers of nodal or internodal differentiation (Caspr, CNTN2, MPZ, Nav). Immunostaining on 491 

branchpoints were excluded due to difficulties to discern from the more prominent nodal structures on 492 

the stem axon. Axon diameter was determined by measuring the area of the entire terminal branch, then 493 

divided by the length of the branch, resulting in an averaged axon diameter. We verified the precision of 494 

our axonal diameter measurement by comparison with other methods to determine axonal diameter (e.g. 495 

averaged multi-site measurements; determination of smallest diameter etc.), and found no significant 496 

difference between Caspr-positive and negative axons in measured caliber with the different approaches 497 

we tested. 498 

Tubulin content of axons was determined by manually placing regions of interest in a single optical 499 

section within an axon, and the mean grey values were averaged for each channel. We have previously 500 

established that immunohistochemically determined tubulin content correlates linearly with microtubule 501 

density as measured by electron microscopy, once corrected for an offset likely representing non-502 

polymerized tubulin (Brill et al., 2016). 503 

For FRAP analysis, in focus images were manually aligned and the intensity of the bleached area was 504 

measured with the polygon tool. The background intensity was measured in a dark and even area, and 505 

another GFP-positive paranode in the same field of view was used as control to correct for the recovery 506 

rate.  507 

For zebrafish myelination, the motor axon length was determined using the segmented line tool based 508 

on α-tubulin staining, and the length of the myelinated stretch is likewise determined based on mbp:RFP 509 

fluorescence. 510 
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Colocalization of GFP-positive Nav puncta and antibody staining was analyzed in single optical sections 511 

of unprocessed images. 512 

To determine transport rates of mitochondria or β1-Nav-GFP particles travelling along the axons, we 513 

counted the number of fluorescent particles passing through a region in focus of the axon quantified.  514 

For image representation, maximum intensity projections were generated from confocal image stacks 515 

with ImageJ/Fiji, then further processed in Adobe Photoshop where channels were adjusted individually. 516 

For better visibility of dim structures gamma was adjusted in images that only represent morphological 517 

detail; no gamma adjustment was performed in quantitative images (all panels in Fig. 2, A and C; Fig. 4, F 518 

and L; Fig 6, A and B; Fig. 7, B and E; Fig. S2, G). 519 

All analysis was performed with the experimenter blinded to the treatment or genotypes during 520 

imaging and scoring. 521 

Statistical Analysis 522 

Statistical tests were performed using the GraphPad PRISM software. Statistical significance was 523 

determined using the Mann-Whitney test (non-parametric test for two groups), following the Kruskal-524 

Wallis test with post hoc Dunn’s multiple comparisons test (non-parametric test for three or more groups) 525 

respectively. Unpaired t-test was used when the data set passed the D’Agostino & Pearson normality test. 526 

The χ2 test was used for comparing expected frequencies between groups, and the p -value calculated 527 

from the test was shown. Group sizes were determined using experience values from prior studies ( e.g. 528 

Brill et al., 2016; Plucińska et al., 2012). P < 0.05 was considered to be significant, and indicated by “*”; P 529 

< 0.01 by “**”; P < 0.001 by “***”; and P < 0.0001 by “****”. Bar graphs show mean + standard error of 530 

the mean. Violin plots depict median and quartiles excluding the outliers, which were identified with 531 

Tukey’s test (Fig. 2, B and D; Fig. 5, B; Fig. S2, H; Fig. S3, D). 532 
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SUPPLEMENTAL MATERIAL 533 

Supplemental information includes 4 supplemental figures and one supplemental table. 534 
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ABBREVIATIONS 864 

AAV: adeno-associated virus 865 

AChR: acetylcholine receptor 866 

BTX: bungarotoxin 867 

Caspr1: contactin-associated protein 1 868 

CBD: cargo-binding domain 869 

CNS: central nervous system 870 

CNTN2: contactin-2  871 

din: doubly innervated NMJ  872 

dpf: days post fertilization 873 

FRAP: fluorescence recovery after photobleaching 874 

KHC: kinesin-1 heavy chain 875 

KO: knock-out 876 

Nav: voltage-gated sodium channel 877 

NMJ: neuromuscular junction 878 

MPZ: myelin protein zero 879 

Nrg1: Neuregulin-1 880 

pERK: phosphorylated form of extracellular signal–regulated kinase 1/2 881 

PNS: peripheral nervous system 882 

P: postnatal day 883 

SC: Schwann cell 884 

sin: singly innervated NMJ  885 
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FIGURE LEGENDS  886 

Figure 1| Myelination coincides with axon remodeling during the second postnatal week. 887 

(A) Schematic of thoracic nerve-muscle explant indicating anatomy of motor axons (dark gray). ‘Stem axon’ 888 

in intercostal nerve; ‘soma’, motor neuron cell body in spinal cord; triangularis sterni muscle (pink); 889 

sternum and ribs (light gray). Boxed area of ‘terminal branches’ is schematized in more detail in (B). (B) 890 

Schematic of terminal branches of motor neurons (dark gray), postsynaptic acetylcholine receptors (‘NMJ’; 891 

blue). Din, doubly innervated NMJ, black arrowheads point to two ‘competing branches’ leadin g to the 892 

same NMJ; sin, singly innervated NMJ, ‘winner branch’. Regions of nodes of Ranvier: paranodes (green), 893 

node (red), juxtaparanodes (cyan). Schwann cells myelinate axons in internodal regions (magenta). (C) P7, 894 

9, 11 triangularis sterni muscles of Thy1-YFP16 mice (axon, white), immunostained for Caspr (green), 895 

postsynaptic acetycholine receptors (BTX, blue). Inset shows emerging paranodal Caspr cluster at P9. 896 

Corresponding schematics to the right, axons (gray) and Caspr-positive paranodes (green). Black 897 

arrowheads point to two axons leading to the same NMJ. (D) Quantification of the percentage of doubly 898 

innervated NMJs at P7, P9, and P11 (n ≥ 5 mice, ≥ 100 NMJs per animal, gray) and the percentage of Caspr-899 

positive terminal branches among singly innervated NMJs (n ≥ 5 mice, ≥ 100 NMJs per animal, gray) and 900 

the percentage of Caspr-positive terminal branches among singly innervated NMJs (n ≥ 7 mice, ≥ 30 901 

branches per animal, green). (E) Nodes of Ranvier and myelin components: Immunostaining for Caspr 902 

(green, paranode), Nav (red, nodal region), CNTN2 (cyan, juxtaparanode) and MPZ (magenta, myelin) in 903 

single terminal axon branches of Thy1-XFP mice (axons, white). (F) Quantification of the percentage of 904 

myelin initiation on winner (singly innervating, ‘sin’) or competing (doubly innervating, ‘din’) terminal axon 905 

branches for Caspr (green), Nav (red), CNTN2 (cyan), or MPZ (magenta; n ≥ 5 mice per group, ≥ 50 906 

branches). Data, mean ± SEM in (D), mean + SEM in (F). *, P < 0.05; **, P < 0.01, Mann-Whitney test. Scale 907 

bars, 10 µm in (C) overview, 2 µm in (C) inset and (E). 908 
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Figure 2| Nodes on competing branches are immature compared to those on winner branches. 909 

(A) Live image of motor axons in P11 Thy1-Caspr-GFP (green) x Thy1-OFP3 (axon, white) nerve-muscle 910 

explant; dashed boxes indicate location of control (Ctrl) and photobleached (FRAP) nodes. Images on the 911 

right are taken before, directly after photobleaching, and 3 hours (h) later. Fire look-up table on the right. 912 

(B) Quantification of Caspr-GFP recovery rate comparing winner branches (sin) of different developmental 913 

ages (6 weeks, wk vs. P9-11) and different competition status at the same developmental age (P9-11 sin, 914 

din, stem; n ≥ 13 axons, ≥ 10 mice per group). (C) Live image of axon branches in P11 Thy1-β1-Nav-GFP 915 

(red) x Thy1-OFP3 (axon, white) nerve-muscle explant; dashed boxes and images on right as in (A).                         916 

(D) Quantification of β1-Nav-GFP recovery rate as in (B; n ≥ 9 axons, ≥ 5 mice per group). ‘Din’, doubly 917 

innervating competing branch; ‘sin’, singly innervating winner branch. Data, mean + SEM. *, P < 0.05; **, 918 

P < 0.01; ****, P < 0.0001, Mann-Whitney test; outliers identified with Tukey’s test. Scale bars, 10 µm in 919 

(A) and (C) overview, 2 µm in insets. 920 

 921 

Figure 3| Myelination of competing branches neither biases competition nor reflects axon 922 

diameter. 923 

(A) Image of a fixed triangularis sterni muscle of a ChAT-IRES-Cre x Thy1-Brainbow-1.1 mouse. Motor units 924 

labeled with distinct fluorescence (axon, orange and white) and immunostained for Caspr (green); 925 

arrowheads point to competing branches and asterisk marks a pruning axon. Inset shows enlarged dashed 926 

box with emerging dotty and more mature paranodal structures. (B) Quantification of Caspr 927 

immunostaining vs. synaptic territory of competing branches (n ≥ 78 axons per group from a total of 69 928 

mice). (C) Graph of measured myelination patterns on paired competing branches vs. the calculated 929 

distribution assuming random myelin initiation. Winner is an axon branch > 50% territory, loser ≤ 50% 930 

territory. (D) Quantification of an axon’s diameter vs. its synaptic territory in axon branches either with 931 

(green) or without Caspr-immunostaining (gray; n ≥ 10 axons, ≥ 7 mice per group). (E) Quantification of 932 



37 
 

the diameter of stretches on retreating axons with (magenta) or without MPZ-immunostaining (gray; n ≥ 933 

8 axons, ≥ 4 mice per group) (F, G) Images of Thy1-XFP terminal branches (axons, white) stained for Caspr 934 

(green) and MPZ (magenta). Schematics to the right depict (F) a myelinated winning branch (black) vs. a 935 

pruning axon (gray; asterisk) without nodes; and (G) a rare example of a myelinated retreating branch 936 

(gray; asterisk) and its winning MPZ- and Caspr-negative competitor (black). ‘Rebu’, retraction bulbs; ‘sin’, 937 

winner axons. Data, mean ± SEM. **, P < 0.01, Mann-Whitney test. Scale bars, 10 µm in (A), (F) and (G). 938 

 939 

Figure 4| Neurotransmission and spastin differentially affect myelination and microtubular 940 

mass. 941 

(A)  Schematic of experimental design. Thy1-YFP16 mice were unilaterally injected with BTX (‘BTX inj’, 942 

orange) into the thoracic wall at P7, resulting in local blockade of acetylcholine receptors. Fixed ipsi- and 943 

contralateral muscles are post-hoc stained at P9 with BTX (blue) and immunostained for Caspr (green).            944 

(B) Contralateral control muscle, and (C) ipsilateral BTX-injected muscle; axons (Thy1-YFP16, white), Caspr 945 

immunostaining (green), post hoc stained BTX (blue), injected BTX (orange). Schematics below depict 946 

motor neurons (gray) and Caspr paranodes (green); black arrowheads point to two competing axons 947 

leading to the same NMJ. (D) Quantification of doubly innervated NMJs at P9 following BTX-injection (n = 948 

8 mice, ≥ 50 axons per animal). (E) Quantification of Caspr-positive competing (‘din’) and winner (‘sin’) 949 

axon branches from BTX-injected muscles vs. controls (n = 6 mice, ≥ 32 axons per side of animal). (F) Images 950 

of competing (‘din’) and winner (‘sin’) terminal branches following BTX injection ( ‘BTX inj’, orange) and 951 

post-hoc staining at P9 with BTX (blue) and βIII-tubulin (white). (G) Quantification of βIII-tubulin intensity 952 

(x-fold normalized to Thy1-YFP16; n ≥ 5 mice, n ≥ 20 axons per side of animal). (H, I) P9 triangularis sterni 953 

muscle of (H) littermate wild-type control (WT) and (I) spastin KO mouse. Axons immunostained for Caspr 954 

(green) and βIII-tubulin (white). Corresponding schematics below, axons (gray) and Caspr-positive 955 

paranodes (green). Black arrowheads point to two axons innervating the same NMJ. (J) Quantification of 956 
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doubly innervated NMJs in P9 spastin KO animals compared to WT littermates (n ≥ 5 mice, n ≥ 70 axons 957 

per animal). (K) Quantification of Caspr-positive terminal branches in P9 spastin KO compared to WT 958 

littermates (n ≥ 7 mice, n ≥ 33 axons per animal). (L) Images of competing (‘din’) and winner (‘sin’) terminal 959 

branches in spastin WT and KO littermates, immunostained for βIII-tubulin (white). (M) Quantification of 960 

βIII-tubulin intensity (x-fold normalized to Thy1-YFP16) in spastin KO vs. WT littermates (n ≥ 5 mice, n ≥ 13 961 

axons per animal). ‘Din’, competing axons; ‘sin’, winner axons. Data, mean + SEM. Mann-Whitney test *, P 962 

< 0.05; **, P < 0.01. Scale bars, 10 µm in (B), (C), (H) and (I), 5 µm in (F) and (L).  963 

 964 

Figure 5| Axonal transport limits myelination onset in terminal motor axon branches.  965 

(A) Schematic of experimental design. AAV9-hSyn-iCre-p2a-KHC-CBD was injected at P2 into the 3rd 966 

ventricle of YFP reporter mice. Muscles were analyzed at P9. (B) Quantification of axonal GFP particle 967 

transport in β1-Nav-GFP animals (n ≥ 16 axons, ≥ 5 mice per group). (C) Image of AAV9-hSyn-iCre-p2a-KHC-968 

CBD-injected P9 triangularis sterni muscle of a YFP reporter mouse immunostained for Caspr (green) and 969 

βIII-tubulin (white). KHC-CBD is overexpressed in iCre-induced recombined YFP reporter-positive axons 970 

(red). Schematic on the right depicts YFP-positive (red) and -negative motor units (gray), Caspr paranodes 971 

(green). (D) Quantification of Caspr-immunostaining on YFP-negative and -positive terminal axon branches 972 

at P9 (n ≥ 5 mice per group, n ≥ 39 axons per mouse). ‘Din’, competing axons; ‘sin’, winner axons. Data, 973 

mean + SEM. *, P < 0.05; **, P < 0.01; ****, P < 0.0001, Mann-Whitney test. Outlier determined by Tukey 974 

test. Scale bar, 20 µm in (C). 975 

 976 

Figure 6| Nrg1 type III transgenic mice show premature myelination initiation. 977 

(A, B) P9 spinal cord of WT control (A) and Thy1-Nrg1 type III-HA (B) littermates. Sections stained for HA-978 

tag (red) and neurotrace (cyan). Dashed boxes enlarged on the right, showing magnified single channel of 979 

neurotrace (cyan) and HA staining (red). (C, D) Confocal images of P9 triangularis sterni muscles from (C) 980 
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WT and (D) Thy1-Nrg1 type III-HA littermates immunostained for βIII-tubulin (white) and Caspr (green). 981 

Schematics below, motor neurons (gray), Caspr paranodes (green). Black arrowheads point to tw o axons 982 

leading to the same NMJ. (E, F) Quantification of the percentage of (E) doubly innervated NMJs and (F) 983 

Caspr-positive terminal branches in P7 and P9 WT vs. transgenic Thy1-Nrg1 type III littermates. (E, n ≥ 3 984 

mice per genotype, ≥ 99 axons per animal; F, n ≥ 3 mice per genotype, ≥ 40 axons per animal). ‘Din’, 985 

competing axons; ‘sin’, winner axons. Data, mean + SEM. *, P < 0.05; **, P < 0.01, Mann -Whitney test. 986 

Scale bars, 10 μm in (A – D).  987 

 988 

Figure 7| Nrg1 type III is more concentrated on singly innervating terminal branches. 989 

(A, B) Plp-GFP x Thy1-Nrg1 type III-HA mouse immunostained for neurofilament (NF, white) in P9 990 

triangularis sterni muscle. A stacked overview of competing (‘din’) vs. winner branches (‘sin’); dashed 991 

boxes enlarged in (B), showing magnified single optical sections of HA staining (red) with GFP labeled 992 

Schwann cells (green). (C) Quantification of HA staining on doubly vs. singly innervating branches in Thy1-993 

Nrg1 type III animals (n = 8 mice per genotype, ≥ 13 axons per animal). (D, E) Plp-GFP x Thy1-Nrg1 type III-994 

HA mice immunostained for βIII-tubulin (white) in P9 triangularis sterni muscle. A stacked overview (D) of 995 

competing (‘din’) vs. winner branches (‘sin’); dashed boxes enlarged in (E), showing magnified single optical 996 

sections of pERK staining (magenta) with GFP labeled Schwann cells (green). (F) Quantification of pERK 997 

staining around doubly vs. singly innervating branches in Thy1-Nrg1 type III animals (n = 5 mice per 998 

genotype, ≥20 axons per animal). (G) Quantification of pAKT immunostaining around doubly vs. singly 999 

innervating branches in Thy1-Nrg1 type III animals, normalized to singly innervating branches (≥ 20 axons 1000 

per group in n = 5 mice). (H) Quantification of HA signal in singly innervating axons in BTX injected 1001 

triangularis sterni muscle vs. uninjected control side (≥ 13 axons per group in n = 6 mice). (I) Quantification 1002 

of pERK signal in Schwann cells surrounding singly innervating axons in BTX injected triangularis sterni 1003 

muscle vs. uninjected control side (≥ 36 axons per group in n = 5 mice). (J) BTX intensity measured in wild-1004 

type and Thy1-Nrg1 type III transgenic animals (wild-type: 698 ± 67 A.U., Thy1-Nrg1 type III: 747 ± 43 A.U., 1005 
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n ≥ 16 NMJ per animal, n ≥ 5 mice per group). (K) Area of BTX-stained endplate measured in wild-type and 1006 

Thy1-Nrg1 type III transgenic animals (wild-type: 195 ± 13 μm2, Thy1-Nrg1 type III: 203 ± 22 μm2, n ≥ 16 1007 

NMJ per animal, n ≥ 5 mice per group). (L) Quantification of the proportions of NMJ morphology, 1008 

categorized into ‘broken’, ‘holes’ and ‘plaque’ (n ≥ 5 mice per group, ≥ 14 NMJ per animal). ‘Din’, competing 1009 

axons; ‘sin’, winner axons. Data, mean + SEM. *, P < 0.05; **, P < 0.01, Mann-Whitney test. Scale bars, 10 1010 

μm in (A) and (D); 5 μm in (B) and (E).  1011 

SUPPLEMENTARY FIGURE LEGENDS  1012 

Figure S1| Characterization of Thy1-Caspr-GFP and Thy1-β1-Nav-GFP mice. 1013 

(A) Confocal image of P9 Thy1-Caspr-GFP (native GFP, green) intercostal axons (βIII-tubulin, white) 1014 

immunostained for Caspr (red). Dashed boxes enlarged below show single channels. The percentage of 1015 

GFP-positive paranodes nodes was stable across development, suggesting consistent labeling of a neuronal 1016 

subset (P9-11: 65  8 % of all paranodal structures; 6 weeks: 73  9 %; P = 0.7, Mann-Whitney test; n = 4 1017 

mice per age group, ≥ 44 nodes per animal). (B) Triangularis sterni muscle of a P9 Thy1-Caspr-GFP mouse 1018 

immunostained for Caspr (red) and axons (III- tubulin, white). Dashed boxes enlarged below, showing 1019 

Caspr/GFP double-positive (i) and Caspr only-positive paranode (ii). Expression of the Caspr-GFP transgene 1020 

did not detectably influence the degree of double innervation (WT: 9  1 % vs. Caspr-GFP: 12  2 %; P = 1021 

0.4, Mann-Whitney test; n = 3 mice per genotype, ≥ 136 axons per animal) or myelination on terminal axon 1022 

branches at P9 (winner branches - WT: 32   2 % vs. Caspr-GFP: 35  8 %; competing branches - WT: 12  1023 

6 %  vs. Caspr-GFP: 7  7 %; P > 0.99, Mann-Whitney test; n = 3 mice per genotype, ≥ 31 axons per animal). 1024 

(C) Image of P9 Thy1-β1-Nav-GFP (native GFP, green) intercostal axons (βIII-tubulin, white) immunostained 1025 

for Nav (red). Dashed boxes enlarged below show single channels. All nodes identified by immunostaining 1026 

were also GFP-positive, indicating transgene expression in all motor neurons (100 ± 0 %; n = 3 mice, ≥ 40 1027 

axons per animal). (D) Triangularis sterni muscle of a P9 Thy1-β1-Nav-GFP mouse immunostained for Nav 1028 
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(red) along terminal axon branches (βIII-tubulin, white). Insets show enlarged Nav/GFP double-positive 1029 

nodes. Expression of the β1-Nav-GFP transgene did not detectably influence the degree of double 1030 

innervation (WT: 11  1 % vs. β1-Nav-GFP: 14  2 %; n = 3 mice per genotype, ≥ 102 axons; P = 0.7, Mann-1031 

Whitney test; axons per animal) or myelination on terminal axon branches at P9 (winner branches - WT: 1032 

38  8 % vs. β1-Nav-GFP: 30  4 %; competing branches - WT: 19  3 % vs. β1-Nav-GFP: 11  6 %; P > 0.4, 1033 

Mann-Whitney test; n = 3 mice per genotype, ≥ 31 axons per animal). ‘Din’, competing axons; ‘sin’, winner 1034 

axons. Scale bars, 10 µm in (A–D) overview, 2 µm in insets. 1035 

 1036 

Figure S2| Innervation and myelination status correlate with axonal tubulin content and SC 1037 

length. 1038 

(A) Images of Schwann cells on singly innervating terminal branches in Plp-GFP (green) mouse following 1039 

BTX injection on P7 vs. contralateral control side and post-hoc staining at P9 with βIII-tubulin (white). 1040 

Schematics to the right depict measured terminal axon length (gray) and Schwann cell outline with cell 1041 

nuclei marked with asterisks. (B–D) Quantification of (B) Schwann cell length, (C) terminal branch length 1042 

and (D) Schwann cell number along singly innervating branches, showing no significant difference after 1043 

BTX treatment in P9 Plp-GFP mice injected with BTX vs. control (≥ 10 axons per animal in n = 5 mice). (E-F) 1044 

Quantification of (E) axonal Schwann cell length (din: 30 ± 2 µm; sin: 24 ± 1 µm) and (F) terminal branch 1045 

length (din: 50 ± 4 µm; sin: 54 ± 5 µm; ≥ 16 axons per animal in n = 5 mice). (G) Images of competing (‘din’) 1046 

and winner (‘sin’) terminal branches in P9 Thy1-YFP16 mice, without or with emerging Caspr paranodes 1047 

(green) and stained βIII-tubulin (white). (H) Quantification of βIII-tubulin intensity (x-fold normalized to 1048 

Thy1-YFP16; Caspr- n ≥ 18 axons per group in n = 3 mice). ‘Din’, competing axons; ‘sin’, winner axons. Data, 1049 

mean + SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001; Mann-Whitney test. Outlier determined by Tukey 1050 

test. Scale bar, 10 µm in (A) and (G). 1051 
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Figure S3| AAV9 mediated spastin deletion promotes myelination on competing branches. 1052 

(A) Schematic of experimental design. AAV9-CMV-iCre was injected at P2 into the 3rd ventricle of spastinfl/fl 1053 

x TdTomato reporter mice. Muscles were analyzed at P9. (B) Image of P9 muscle immunostained for Caspr 1054 

(green) and βIII-tubulin (white). iCre-mediated deletion resulted in TdTomato-positive axons (red), 1055 

presumed to lack spastin. Schematic on the right depicts TdTomato-positive (red) and -negative motor 1056 

units (gray), Caspr paranodes (green). Black arrowheads point to competing axons leading to the same 1057 

NMJ. (C) Quantification of Caspr-immunostaining on TdTomato-negative and -positive terminal branches 1058 

at P9 (n ≥ 3 mice per group, n ≥ 15 axons per mouse) . (D) Quantification of axon diameter of TdTomato-1059 

negative and -positive terminal branches at P9 (n ≥ 10 axons per group, n = 5 mice). (E) Schematic of 1060 

experimental design. AAV9-CMV-iCre was injected at P2 into the 3rd ventricle of Nrg1 type IIIfl/fl x TdTomato 1061 

reporter mice. Muscles were analyzed at P9. (F) Image of P9 muscle immunostained for Caspr (green) and 1062 

βIII-tubulin (white). iCre-mediated deletion resulted in TdTomato-positive axons (red), presumed to lack 1063 

Nrg1. Schematic on the right depicts TdTomato-positive (red) and -negative motor units (gray), Caspr 1064 

paranodes (green). Black arrowheads point to two axons leading to the same NMJ. (G) Quantification of 1065 

doubly innervated NMJs on TdTomato-negative and -positive terminal branches at P9 (n = 4 mice per group, 1066 

≥ 97 axons per animal). (H) Quantification of Caspr-immunostaining on TdTomato-negative and -positive 1067 

terminal branches at P9 (n = 4 mice per group, ≥ 29 axons per animal). ‘Din’, competing axons; ‘sin’, winner 1068 

axons. Data, mean + SEM. *, P < 0.05, Mann-Whitney test. Outlier determined by Tukey test. Scale bar, 10 1069 

µm in (B) and (F). 1070 

 1071 

Figure S4| Microtubule-dependent axonal transport affects myelination onset. 1072 

(A–D) Whole-mount immunohistochemical staining against α-tub (white) to label axons in Tg(mbp:RFP) 1073 

(magenta) transgenic zebrafish larvae injected with cntn1b:GFP as control (A, B) and  cntn1b:GFP-KHC-CBD 1074 

(C, D). Dashed boxes in (A, C) are enlarged in (B, D) showing mbp:RFP only. (E) Example of an individual 1075 



43 
 

cntn1b:GFP-KHC-CBD labelled motor neuron (yellow) and its myelination (magenta). Solid arrow heads 1076 

point to ends of myelin sheaths; empty arrow head points to extend of myelination along KHC -CBD 1077 

expressing axons compared to control axons in the adjacent somite (unlabeled). (F) Length of spinal motor 1078 

axons, measured between the branching-off point at the spinal cord to the axon tip (n = 7 zebrafish per 1079 

group, n ≥ 29 axons per animal). (G) Progress of myelination expressed as percentage of mbp:RFP-positive 1080 

axon length (n = 7 zebrafish per group, n ≥ 29 axons per animal). Data, mean + SEM. ***, P < 0.001, Mann-1081 

Whitney test. Scale bar, 50 µm in (A–E). 1082 
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