330 research outputs found

    Extragalactic Results from the Infrared Space Observatory

    Full text link
    More than a decade ago the IRAS satellite opened the realm of external galaxies for studies in the 10 to 100 micron band and discovered emission from tens of thousands of normal and active galaxies. With the 1995-1998 mission of the Infrared Space Observatory the next major steps in extragalactic infrared astronomy became possible: detailed imaging, spectroscopy and spectro-photometry of many galaxies detected by IRAS, as well as deep surveys in the mid- and far- IR. The spectroscopic data reveal a wealth of detail about the nature of the energy source(s) and about the physical conditions in galaxies. ISO's surveys for the first time explore the infrared emission of distant, high-redshift galaxies. ISO's main theme in extragalactic astronomy is the role of star formation in the activity and evolution of galaxies.Comment: 106 pages, including 17 figures. Ann.Rev.Astron.Astrophys. (in press), a gzip'd pdf file (667kB) is also available at http://www.mpe.mpg.de/www_ir/preprint/annrev2000.pdf.g

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Ancient DNA analysis suggests negligible impact of the Wari Empire expansion in Peru's Central Coast during the Middle Horizon

    Get PDF
    The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650-1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region's demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500-700 AD), Wari (Middle Horizon, 800-1000 AD) and Ychsma (Late Intermediate Period, 1000-1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast.Guido Valverde, María Inés Barreto Romero, Isabel Flores Espinoza, Alan Cooper, Lars Fehren-Schmitz, Bastien Llamas, Wolfgang Haa

    Parent-reported health care expenditures associated with autism spectrum disorders in Heilongjiang province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine the health expenses incurred by families with children with autism spectrum disorder (ASD) and those expenses' relation to total household income and expenditures.</p> <p>Methods</p> <p>In this cross-sectional study, health care expenditure data were collected through face-to-face interviews. Expenses included annual costs for clinic visits, medication, behavioral therapy, transportation, and accommodations. Health care costs as a percentage of total household income and expenditures were also determined. The participants included 290 families with ASD children who were treated at the Children Development and Behavior Research Center, Harbin Medical University, China.</p> <p>Results</p> <p>Families with ASD children from urban and rural areas had higher per-capita household expenditures by 60.8% and 74.7%, respectively, compared with provincial statistics for 2007. Behavioral therapy accounted for the largest proportion of health expenses (54.3%) for ASD children. In 19.9% of urban and 38.2% of rural families, health care costs exceeded the total annual household income. Most families (89.3% of urban families; 88.1% of rural families) in that province reported higher health care expenditures than the provincial household average.</p> <p>Conclusion</p> <p>For families with ASD children, the economic burden of health care is substantially higher than the provincial average.</p

    QTLs for oil yield components in an elite oil palm (Elaeis guineensis) cross

    Get PDF
    Increased modern farming of superior types of the oil palm, Elaeis guineensis Jacq., which has naturally efficient oil biosynthesis, has made it the world’s foremost edible oil crop. Breeding improvement is, however, circumscribed by time and costs associated with the tree’s long reproductive cycle, large size and 10–15 years of field testing. Marker-assisted breeding has considerable potential for improving this crop. Towards this, quantitative trait loci (QTL) linked to oil yield component traits were mapped in a high-yield population. In total, 164 QTLs associated with 21 oil yield component traits were discovered, with cumulative QTL effects increasing in tandem with the number of QTL markers and matching the QT+ alleles for each trait. The QTLs confirmed all traits to be polygenic, with many genes of individual small effects on independent loci, but epistatic interactions are not ruled out. Furthermore, several QTLs maybe pleiotropic as suggested by QTL clustering of inter-related traits on almost all linkage groups. Certain regions of the chromosomes seem richer in the genes affecting a particular yield component trait and likely encompass pleiotropic, epistatic and heterotic effects. A large proportion of the identified additive effects from QTLs may actually arise from genic interactions between loci. Comparisons with previous mapping studies show that most of the QTLs were for similar traits and shared similar marker intervals on the same linkage groups. Practical applications for such QTLs in marker-assisted breeding will require seeking them out in different genetic backgrounds and environments

    Resilience to Disturbance Despite Limited Dispersal and Self-Recruitment in Tropical Barrel Sponges: Implications for Conservation and Management

    Get PDF
    While estimates of connectivity are important for effective management, few such estimates are available for reef invertebrates other than for corals. Barrel sponges are one of the largest and most conspicuous members of the coral reef fauna across the Indo-Pacific and given their large size, longevity and ability to process large volumes of water, they have a major role in reef functioning. Here we used a panel of microsatellite markers to characterise the genetic structure of two barrel sponge species, Xestospongia testudinaria and a currently undescribed Xestospongia species. We sampled across seven populations in the Wakatobi Marine National Park, SE Sulawesi (Indonesia) spanning a spatial scale of approximately 2 to 70 km, and present the first estimates of demographic connectivity for coral reef sponges. Genetic analyses showed high levels of genetic differentiation between all populations for both species, but contrasting patterns of genetic structuring for the two species. Autocorrelation analyses showed the likely dispersal distances of both species to be in the order of 60 and 140 m for Xestopongia sp. and Xestospongia testudinaria, respectively, which was supported by assignment tests that showed high levels of self-recruitment (>80%). We also found consistently high inbreeding coefficients across all populations for both species. Our study highlights the potential susceptibility of barrel sponges to environmental perturbations because they are generally long-lived, slow growing, have small population sizes and are likely to be reliant on self-recruitment. Surprisingly, despite these features we actually found the highest abundance of both barrel sponge species (although they were generally smaller) at a site that has been severely impacted by humans over the last fifty years. This suggests that barrel sponges exhibit environmental adaptation to declining environmental quality and has important implications for the management and conservation of these important reef species. © 2014 Bell et al

    Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains

    Get PDF
    Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors

    QTL Analysis of Shading Sensitive Related Traits in Maize under Two Shading Treatments

    Get PDF
    During maize development and reproduction, shading stress is an important abiotic factor influencing grain yield. To elucidate the genetic basis of shading stress in maize, an F2:3 population derived from two inbred lines, Zhong72 and 502, was used to evaluate the performance of six traits under shading treatment and full-light treatment at two locations. The results showed that shading treatment significantly decreased plant height and ear height, reduced stem diameter, delayed day-to-tassel (DTT) and day-to-silk (DTS), and increased anthesis-silking interval (ASI). Forty-three different QTLs were identified for the six measured traits under shading and full light treatment at two locations, including seven QTL for plant height, nine QTL for ear height, six QTL for stem diameter, seven QTL for day-to-tassel, six QTL for day-to-silk, and eight QTL for ASI. Interestingly, three QTLs, qPH4, qEH4a, and qDTT1b were detected under full sunlight and shading treatment at two locations simultaneously, these QTL could be used for selecting elite hybrids with high tolerance to shading and high plant density. And the two QTL, qPH10 and qDTS1a, were only detected under shading treatment at two locations, should be quit for selecting insensitive inbred line in maize breeding procedure by using MAS method

    Interactive Effects of Time, CO\u3csub\u3e2\u3c/sub\u3e, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community

    Get PDF
    Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatmentdriven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition
    corecore