27 research outputs found

    Recent expansion of marine protected areas matches with home range of grey reef sharks

    Full text link
    Dramatic declines in reef shark populations have been documented worldwide in response to human activities. Marine Protected Areas (MPAs) offer a useful mechanism to protect these species and their roles in coral reef ecosystems. The effectiveness of MPAs notably relies on compliance together with sufficient size to encompass animal home range. Here, we measured home range of 147 grey reef sharks, Carcharhinus amblyrhynchos, using acoustic telemetry in New Caledonia. The distribution of home range was then compared to local MPA sizes. We report a home range of 12 km2 of reef for the species with strong differences between adult males (21 km2), adult females (4.4 km2) and juveniles (6.2 km2 for males, 2.7 km2 for females). Whereas local historic MPA size seemed adequate to protect reef shark home range in general, these were clearly too small when considering adult males only, which is consistent with the reported failure of MPAs to protect sharks in New Caledonia. Fortunately, the recent implementation of several orders of magnitude larger MPAs in New Caledonia and abroad show that recent Indo-Pacific MPAs are now sufficiently large to protect the home ranges of this species, including males, across its geographical range. However, protection efforts are concentrated in a few regions and cannot provide adequate protection at a global scale

    Environmental DNA illuminates the dark diversity of sharks

    Get PDF
    In the era of “Anthropocene defaunation,” large species are often no longer detected in habitats where they formerly occurred. However, it is unclear whether this apparent missing, or “dark,” diversity of megafauna results from local species extirpations or from failure to detect elusive remaining individuals. We find that despite two orders of magnitude less sampling effort, environmental DNA (eDNA) detects 44% more shark species than traditional underwater visual censuses and baited videos across the New Caledonian archipelago (south-western Pacific). Furthermore, eDNA analysis reveals the presence of previously unobserved shark species in human-impacted areas. Overall, our results highlight a greater prevalence of sharks than described by traditional survey methods in both impacted and wilderness areas. This indicates an urgent need for large-scale eDNA assessments to improve monitoring of threatened and elusive megafauna. Finally, our findings emphasize the need for conservation efforts specifically geared toward the protection of elusive, residual populations

    Epidemiology of lobomycosis-like disease in bottlenose dolphins Tursiops spp. from South America and southern Africa

    Get PDF
    We report on the epidemiology of lobomycosis-like disease (LLD), a cutaneous disorder evoking lobomycosis, in 658 common bottlenose dolphins Tursiops truncatus from South America and 94 Indo-Pacific bottlenose dolphins T. aduncus from southern Africa. Photographs and stranding records of 387 inshore residents, 60 inshore non-residents and 305 specimens of undetermined origin (inshore and offshore) were examined for the presence of LLD lesions from 2004 to 2015. Seventeen residents, 3 non-residents and 1 inshore dolphin of unknown residence status were positive. LLD lesions appeared as single or multiple, light grey to whitish nodules and plaques that may ulcerate and increase in size over time. Among resident dolphins, prevalence varied significantly among 4 communities, being low in Posorja (2.35%, n = 85), Ecuador, and high in Salinas, Ecuador (16.7%, n = 18), and Laguna, Brazil (14.3%, n = 42). LLD prevalence increased in 36 T. truncatus from Laguna from 5.6% in 2007−2009 to 13.9% in 2013−2014, albeit not significantly. The disease has persisted for years in dolphins from Mayotte, Laguna, Salinas, the Sanquianga National Park and Bahía Málaga (Colombia) but vanished from the Tramandaí Estuary and the Mampituba River (Brazil). The geographical range of LLD has expanded in Brazil, South Africa and Ecuador, in areas that have been regularly surveyed for 10 to 35 yr. Two of the 21 LLD-affected dolphins were found dead with extensive lesions in southern Brazil, and 2 others disappeared, and presumably died, in Ecuador. These observations stress the need for targeted epidemiological, histological and molecular studies of LLD in dolphins, especially in the Southern Hemisphere.The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to E.R.S. (PQ 307846/2014-8) and P.H.O. (Process 572180/2008-0), and L.F. was sponsored by Petrobras through Petrobras Socio Ambiental.http://www.int-res.com/journals/dao/dao-home/2020-11-30am201

    Moray eels are more common on coral reefs subject to higher human pressure in the greater Caribbean

    Get PDF
    Proximity and size of the nearest market (market gravity) have been shown to have strong negative effects on coral reef fish communities that can be mitigated by the establishment of closed areas. However, moray eels are functionally unique predators that are generally not subject to targeted fishing and should therefore not directly be affected by these factors. We used baited remote underwater video systems to investigate associations between morays and anthropogenic, habitat, and ecological factors in the Caribbean region. Market gravity had a positive effect on morays, while the opposite pattern was observed in a predator group subject to exploitation (sharks). Environmental DNA analyses corroborated the positive effect of market gravity on morays. We hypothesize that the observed pattern could be the indirect result of the depletion of moray competitors and predators near humans

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Comparison of Marine Spatial Planning Methods in Madagascar Demonstrates Value of Alternative Approaches

    Get PDF
    The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the “strict protection” class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals

    Repeated long-range migrations of adult males in a common Indo-Pacific reef shark

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. The grey reef shark, Carcharhinus amblyrhynchos, is one of the most abundant coral reef sharks throughout the Indo-Pacific. However, this species has been critically impacted across its range, with well-documented population declines of > 90% attributed to human activities. A key knowledge gap in the successful implementation of grey reef shark conservation plans is the understanding of large-scale movement patterns, along with the associated biological and ecological drivers. To address this shortfall, we acoustically monitored 147 adult and juvenile grey reef sharks of all sexes for more than 2 yr across the New Caledonian archipelago, West Pacific. Here, we document multiple adult males undertaking return journeys of up to nearly 700 km in consecutive years. This constitutes the first evidence of repeated long-range migrations for this species. Although only a limited number of adult males were definitively tracked undertaking migrations, similar timing in changes in the detection patterns of a further 13 animals, mostly adult males, suggests this behavior may be more common than previously thought. The paucity of evidence for juvenile migrations and timing of adult movements suggest that mating is the motivation behind these migrations. Our results have important implications for management, given the potential of mature individuals to recurrently travel outside managed or protected areas. Future management of this species clearly needs to consider the importance of large-scale migratory behaviors when developing management plans
    corecore