22 research outputs found

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes

    The mirror of mans lyfe [electronic resource] : Plainely describing, what weake moulde we are made of: what miseries we are subiect vnto: howe vncertaine this life is: and what shal be our ende. Englished by H. K.

    No full text
    A translation, by H. Kerton, of: Innocent III. De contemptu mundi.Includes: Gosson, Stephen. Speculum humanum.Signatures: [par] Ap4s B-K.Reproduction of the original in the British Library.STC (2nd ed.)Electronic reproduction

    Driven-dissipative non-equilibrium Bose-Einstein condensation of less than ten photons

    No full text
    In a Bose–Einstein condensate, bosons condense in the lowest-energy mode available and exhibit high coherence. Quantum condensation is inherently a multimode phenomenon, yet understanding of the condensation transition in the macroscopic limit is hampered by the difficulty in resolving populations of individual modes and the coherences between them. Here, we report non-equilibrium Bose–Einstein condensation of 7 ± 2 photons in a sculpted dye-filled microcavity, where the extremely small particle number and large mode spacing of the condensate allow us to measure occupancies and coherences of the individual energy levels of the bosonic field. Coherence of the individual modes is found to generally increase with increasing photon number. However, at the break-down of thermal equilibrium we observe phase transitions to a multimode condensate regime wherein coherence unexpectedly decreases with increasing population, suggesting the presence of strong intermode phase or number correlations despite the absence of a direct nonlinearity. Experiments are well-matched to a detailed non-equilibrium model. We find that microlaser and Bose–Einstein statistics each describe complementary parts of our data and are limits of our model in appropriate regimes, providing elements to inform the debate on the differences between the two concepts1,2
    corecore