34 research outputs found

    Thermal Design Characterization of Heat Exchangers for 3 Stages Turbo Centrifugal Geared Air Compressor

    Full text link
    A single or multi stage turbo centrifugal geared compressor is widely used in various industrial application such as oil & gas, chemical, power, and air separation plants. It is consist of compression part including air scroll, impeller, and diffuser, gear and bearing, cooling, oil, sealing, and control systems. Shell and tube type heat exchanger commonly used to cool down compressed gas or air between stages or after final stages, and supply oil temperature as a cooler. On compressor’s cooling system strongly required to compact (miniaturization) and high heat transfer capability. Increases of heat transfer capability can result reduce compression aero-power and pumping-power, enhance system stability, and compact. Recently, nanofluid, which is a colloidal dispersion of nano-sized particles in basefluid such as water, ethylene-glycol, propylene-glycol and their mixtures etc., exhibit a significant enhancement in their thermal conductivity. Thus, using nanofluida expected to be an advanced coolant material in compressor cooling system. In this study, HTRI Xist used to thermal design of heat exchanger, nanofluid’s thermal conductivity used to coolant material property. The thermal conductivity of the nanofluid increased by 9.3% compared to that of water. The heat exchanger’s tube side overall heat transfer rate is increased by ~7% compared to that of basefluid

    Oxycodone-induced dopaminergic and respiratory effects are modulated by deep brain stimulation

    Get PDF
    Introduction: Opioids are the leading cause of overdose death in the United States, accounting for almost 70,000 deaths in 2020. Deep brain stimulation (DBS) is a promising new treatment for substance use disorders. Here, we hypothesized that VTA DBS would modulate both the dopaminergic and respiratory effect of oxycodone.Methods: Multiple-cyclic square wave voltammetry (M-CSWV) was used to investigate how deep brain stimulation (130 Hz, 0.2 ms, and 0.2 mA) of the rodent ventral segmental area (VTA), which contains abundant dopaminergic neurons, modulates the acute effects of oxycodone administration (2.5 mg/kg, i.v.) on nucleus accumbens core (NAcc) tonic extracellular dopamine levels and respiratory rate in urethane-anesthetized rats (1.5 g/kg, i.p.).Results: I.V. administration of oxycodone resulted in an increase in NAcc tonic dopamine levels (296.9 ± 37.0 nM) compared to baseline (150.7 ± 15.5 nM) and saline administration (152.0 ± 16.1 nM) (296.9 ± 37.0 vs. 150.7 ± 15.5 vs. 152.0 ± 16.1, respectively, p = 0.022, n = 5). This robust oxycodone-induced increase in NAcc dopamine concentration was associated with a sharp reduction in respiratory rate (111.7 ± 2.6 min−1 vs. 67.9 ± 8.3 min−1; pre- vs. post-oxycodone; p < 0.001). Continuous DBS targeted at the VTA (n = 5) reduced baseline dopamine levels, attenuated the oxycodone-induced increase in dopamine levels to (+39.0% vs. +95%), and respiratory depression (121.5 ± 6.7 min−1 vs. 105.2 ± 4.1 min−1; pre- vs. post-oxycodone; p = 0.072).Discussion: Here we demonstrated VTA DBS alleviates oxycodone-induced increases in NAcc dopamine levels and reverses respiratory suppression. These results support the possibility of using neuromodulation technology for treatment of drug addiction

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    No full text
    Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD) significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP) assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation

    Data_Sheet_1_High frequency deep brain stimulation can mitigate the acute effects of cocaine administration on tonic dopamine levels in the rat nucleus accumbens.docx

    No full text
    Cocaine’s addictive properties stem from its capacity to increase tonic extracellular dopamine levels in the nucleus accumbens (NAc). The ventral tegmental area (VTA) is a principal source of NAc dopamine. To investigate how high frequency stimulation (HFS) of the rodent VTA or nucleus accumbens core (NAcc) modulates the acute effects of cocaine administration on NAcc tonic dopamine levels multiple-cyclic square wave voltammetry (M-CSWV) was used. VTA HFS alone decreased NAcc tonic dopamine levels by 42%. NAcc HFS alone resulted in an initial decrease in tonic dopamine levels followed by a return to baseline. VTA or NAcc HFS following cocaine administration prevented the cocaine-induced increase in NAcc tonic dopamine. The present results suggest a possible underlying mechanism of NAc deep brain stimulation (DBS) in the treatment of substance use disorders (SUDs) and the possibility of treating SUD by abolishing dopamine release elicited by cocaine and other drugs of abuse by DBS in VTA, although further studies with chronic addiction models are required to confirm that. Furthermore, we demonstrated the use of M-CSWV can reliably measure tonic dopamine levels in vivo with both drug administration and DBS with minimal artifacts.</p
    corecore