98 research outputs found

    Effect of calcium phosphate and vitamin D3supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron

    Get PDF
    BACKGROUND: The aim of the present study was to determine the effect of calcium phosphate and/or vitamin D(3) on bone and mineral metabolism. METHODS: Sixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D(3)). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D(3) (additional 10 μg/d) and CaP + vitamin D(3). In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine. RESULTS: After four and eight weeks, CaP and CaP + vitamin D(3) supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D(3) supplementations (vitamin D(3), CaP + vitamin D(3)), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention. CONCLUSIONS: Supplementation with daily 10 μg vitamin D(3) significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D(3) have no beneficial effect on bone remodelling markers and on the metabolism of calcium, phosphorus, magnesium and iron. TRIAL REGISTRATION: NCT0129702

    Nutrient intake and nutrition status in vegetarians and vegans in comparison to omnivores - the nutritional evaluation (NuEva) study

    Get PDF
    In recent years, vegetarian and vegan diets became increasingly important as they are associated with beneficial health outcomes. Therefore, the NuEva study compares the impact of flexitarian, vegetarian, or vegan diets with omnivorous nutritional habits on nutrient intake and risk factors for non-communicable diseases. Methods A dietary protocol was kept over five days and blood and 24h urine samples were collected to examine the impact of dietary habits [omnivores, n = 65 (Median/Interquartile range: 33/17 yrs.), flexitarians, n = 70 (30/17 yrs.), ovo-lacto vegetarians, n = 65 (28/14 yrs.), vegans, n = 58 (25/10 yrs.)] on nutrient intake, nutrient concentrations in plasma, serum or 24h urine, body composition, and blood lipids. Results The increased exclusion of animal based foods in the diet (omnivores < flexitarians < vegetarians < vegans) is associated with a decreased intake of energy, saturated fat, cholesterol, disaccharides, and total sugar as well an increased intake of dietary fibers, beta carotene, vitamin E and K. The combined index of the B12 status (4cB12 score) in vegetarians (0.02/0.75) was lower compared to omnivores (0.34/0.58; p ≤ 0.05) and flexitarians (0.24/0.52; p ≤ 0.05). In omnivores vitamin A, vitamin E, ferritin, and the urinary excretion of selenium, iodine, and zinc were higher than in vegans ( p ≤ 0.05). In contrast, vegans had the highest concentrations of biotin, folate, and vitamin C. Flexitarians, vegetarians, and vegans had a lower body weight, BMI, and body fat percentage in comparison to omnivores ( p ≤ 0.05). In omnivores the concentrations on total cholesterol, total cholesterol/HDL cholesterol ratio, LDL cholesterol, LDL cholesterol/HDL cholesterol ratio, apolipoprotein B, and apolipoprotein B/ apolipoprotein A1 ratio were higher than in vegetarians and vegans ( p ≤ 0.05). Conclusion The NuEva study confirms the position of the Academy of Nutrition and Dietetics that adequately planned vegetarian diets are healthy, nutritionally adequate, and may provide health benefits in the prevention and treatment of non-communicable diseases. Nevertheless, critical nutrients were identified for all groups studied. This highlights the need to develop individual nutritional concepts to ensure an adequate nutrient intake

    Effect of a regular consumption of traditional and roasted oat and barley flakes on blood lipids and glucose metabolism–A randomized crossover trial

    Get PDF
    Background Regular consumption of the soluble dietary fiber β-glucan is associated with decreased total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and blood glucose. Barley and oat flakes as natural sources of β-glucan were roasted to improve sensory quality. The aim of this study was to investigate whether roasting of barley and oat flakes changes the physiological impact of the β-glucan-rich flakes on glucose and lipid metabolism. Method A five-armed randomized crossover trial design was used. The intervention study was conducted from May 2018 to May 2019 and included 32 healthy subjects with moderately increased LDL cholesterol (≥2.5 mmol/L). During the 3-week intervention periods, 80 g of roasted or traditional barley or oat flakes, or four slices of white toast bread per day were consumed for breakfast. At the start and the end of each intervention, fasting and postprandial blood was taken. The intervention periods were separated by 3-week wash-out periods. Results During the interventions with the cereal flakes, TC and LDL cholesterol concentrations were significantly reduced compared to baseline values by mean differences of 0.27–0.33 mmol/L and 0.21–0.30 mmol/L, respectively ( p < 0.05), while high-density lipoprotein (HDL) cholesterol was only reduced after the intervention with barley flakes ( p < 0.05). After the intervention period with toast, TC and HDL cholesterol increased ( p < 0.05). The fasting levels of triglycerides, fasting blood glucose and insulin did not change in any group. The effects of traditional and roasted varieties on blood lipids did not differ between the groups. Conclusion The regular consumption of traditional or roasted barley and oat flakes contributes to the management of cardiovascular diseases by improving TC and LDL cholesterol. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03648112 , identifier NCT03648112

    Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma

    Get PDF
    In clinical diagnostics and research, blood samples are one of the most frequently used materials. Nevertheless, exploring the chemical composition of human plasma and serum is challenging due to the highly dynamic influence of pre-analytical variation. A prominent example is the variability in pre-centrifugation delay (time-to-centrifugation; TTC). Quality indicators (QI) reflecting sample TTC are of utmost importance in assessing sample history and resulting sample quality, which is essential for accurate diagnostics and conclusive, reproducible research. In the present study, we subjected human blood to varying TTCs at room temperature prior to processing for plasma or serum preparation. Potential sample QIs were identified by Ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) based metabolite profiling in samples from healthy volunteers (n = 10). Selected QIs were validated by a targeted MS/MS approach in two independent sets of samples from patients (n = 40 and n = 70). In serum, the hypoxanthine/guanosine (HG) and hypoxanthine/inosine (HI) ratios demonstrated high diagnostic performance (Sensitivity/Specificity > 80%) for the discrimination of samples with a TTC > 1 h. We identified several eicosanoids, such as 12-HETE, 15-(S)-HETE, 8-(S)-HETE, 12-oxo-HETE, (±)13-HODE and 12-(S)-HEPE as QIs for a pre-centrifugation delay > 2 h. 12-HETE, 12-oxo-HETE, 8-(S)-HETE, and 12-(S)-HEPE, and the HI- and HG-ratios could be validated in patient samples

    Optimized identification of advanced chronic kidney disease and absence of kidney disease by combining different electronic health data resources and by applying machine learning strategies

    Get PDF
    Automated identification of advanced chronic kidney disease (CKD ≥ III) and of no known kidney disease (NKD) can support both clinicians and researchers. We hypothesized that identification of CKD and NKD can be improved, by combining information from different electronic health record (EHR) resources, comprising laboratory values, discharge summaries and ICD-10 billing codes, compared to using each component alone. We included EHRs from 785 elderly multimorbid patients, hospitalized between 2010 and 2015, that were divided into a training and a test (n = 156) dataset. We used both the area under the receiver operating characteristic (AUROC) and under the precision-recall curve (AUCPR) with a 95% confidence interval for evaluation of different classification models. In the test dataset, the combination of EHR components as a simple classifier identified CKD ≥ III (AUROC 0.96[0.93–0.98]) and NKD (AUROC 0.94[0.91–0.97]) better than laboratory values (AUROC CKD 0.85[0.79–0.90], NKD 0.91[0.87–0.94]), discharge summaries (AUROC CKD 0.87[0.82–0.92], NKD 0.84[0.79–0.89]) or ICD-10 billing codes (AUROC CKD 0.85[0.80–0.91], NKD 0.77[0.72–0.83]) alone. Logistic regression and machine learning models improved recognition of CKD ≥ III compared to the simple classifier if only laboratory values were used (AUROC 0.96[0.92–0.99] vs. 0.86[0.81–0.91], p < 0.05) and improved recognition of NKD if information from previous hospital stays was used (AUROC 0.99[0.98–1.00] vs. 0.95[0.92–0.97]], p < 0.05). Depending on the availability of data, correct automated identification of CKD ≥ III and NKD from EHRs can be improved by generating classification models based on the combination of different EHR components

    Genetic Regulation of Cytokine Response in Patients with Acute Community-Acquired Pneumonia

    Get PDF
    Background: Community-acquired pneumonia (CAP) is an acute disease condition with a high risk of rapid deteriorations. We analysed the influence of genetics on cytokine regulation to obtain a better understanding of patient’s heterogeneity. Methods: For up to N = 389 genotyped participants of the PROGRESS study of hospitalised CAP patients, we performed a genome-wide association study of ten cytokines IL-1β, IL-6, IL-8, IL-10, IL-12, MCP-1 (MCAF), MIP-1α (CCL3), VEGF, VCAM-1, and ICAM-1. Consecutive secondary analyses were performed to identify independent hits and corresponding causal variants. Results: 102 SNPs from 14 loci showed genome-wide significant associations with five of the cytokines. The most interesting associations were found at 6p21.1 for VEGF (p = 1.58 × 10−20), at 17q21.32 (p = 1.51 × 10−9) and at 10p12.1 (p = 2.76 × 10−9) for IL-1β, at 10p13 for MIP-1α (CCL3) (p = 2.28 × 10−9), and at 9q34.12 for IL-10 (p = 4.52 × 10−8). Functionally plausible genes could be assigned to the majority of loci including genes involved in cytokine secretion, granulocyte function, and cilial kinetics. Conclusion: This is the first context-specific genetic association study of blood cytokine concentrations in CAP patients revealing numerous biologically plausible candidate genes. Two of the loci were also associated with atherosclerosis with probable common or consecutive pathomechanisms

    Persistent humoral and CD4 + T H cell immunity after mild SARS-COV-2 infection—The CoNAN long-term study

    Get PDF
    Understanding persistent cellular and humoral immune responses to SARS-CoV-2 will be of major importance to terminate the ongoing pandemic. Here, we assessed long-term immunity in individuals with mild COVID-19 up to 1 year after a localized SARS-CoV-2 outbreak. CoNAN was a longitudinal population-based cohort study performed 1.5 months, 6 months, and 12 months after a SARS-CoV-2 outbreak in a rural German community. We performed a time series of five different IgG immunoassays assessing SARS-CoV-2 antibody responses on serum samples from individuals that had been tested positive after a SARS-CoV-2 outbreak and in control individuals who had a negative PCR result. These analyses were complemented with the determination of spike-antigen specific TH cell responses in the same individuals. All infected participants were presented as asymptomatic or mild cases. Participants initially tested positive for SARS-CoV-2 infection either with PCR, antibody testing, or both had a rapid initial decline in the serum antibody levels in all serological tests but showed a persisting T H cell immunity as assessed by the detection of SARS-CoV-2 specificity of T H cells for up to 1 year after infection. Our data support the notion of a persistent T-cell immunity in mild and asymptomatic cases of SARS-CoV-2 up to 1 year after infection. We show that antibody titers decline over 1 year, but considering several test results, complete seroreversion is rare. Trial registration German Clinical Trials Register DRKS00022416

    PROGRESS – prospective observational study on hospitalized community acquired pneumonia

    Get PDF
    Background: Community acquired pneumonia (CAP) is a high incidence disease resulting in about 260,000 hospital admissions per year in Germany, more than myocardial infarction or stroke. Worldwide, CAP is the most frequent infectious disease with high lethality ranging from 1.2 % in those 20–29 years old to over 10 % in patients older than 70 years, even in industrial nations. CAP poses numerous medical challenges, which the PROGRESS (Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of Severe Sepsis) network aims to tackle: Operationalization of disease severity throughout the course of disease, outcome prediction for hospitalized patients and prediction of transitions from uncomplicated CAP to severe CAP, and finally, to CAP with sepsis and organ failure as a life-threatening condition. It is a major aim of PROGRESS to understand and predict patient heterogeneity regarding outcome in the hospital and to develop novel treatment concepts. Methods: PROGRESS was designed as a clinical, observational, multi-center study of patients with CAP requiring hospitalization. More than 1600 patients selected for low burden of co-morbidities have been enrolled, aiming at a total of 3000. Course of disease, along with therapy, was closely monitored by daily assessments and long-term follow-up. Daily blood samples allow in depth molecular-genetic characterization of patients. We established a well-organized workflow for sample logistics and a comprehensive data management system to collect and manage data from more than 50 study centers in Germany and Austria. Samples are stored in a central biobank and clinical data are stored in a central data base which also integrates all data from molecular assessments. Discussion: With the PROGRESS study, we established a comprehensive data base of high quality clinical and molecular data allowing investigation of pressing research questions regarding CAP. In-depth molecular characterization will contribute to the discovery of disease mechanisms and establishment of diagnostic and predictive biomarkers. A strength of PROGRESS is the focus on younger patients with low burden of co-morbidities, allowing a more direct look at host biology with less confounding. As a resulting limitation, insights from PROGRESS will require validation in representative patient cohorts to assess clinical utility. Trial registration: The PROGRESS study was retrospectively registered on May 24th, 2016 with ClinicalTrials.gov: NCT0278201

    LacaScore: a novel plasma sample quality control tool based on ascorbic acid and lactic acid levels

    Get PDF
    Introduction Metabolome analysis is complicated by the continuous dynamic changes of metabolites in vivo and ex vivo. One of the main challenges in metabolomics is the robustness and reproducibility of results, partially driven by pre-analytical variations. Objectives The objective of this study was to analyse the impact of pre-centrifugation time and temperature, and to determine a quality control marker in plasma samples. Methods Plasma metabolites were measured by gas chromatography-mass spectrometry (GC–MS) and analysed with the MetaboliteDetector software. The metabolites, which were the most labile to pre-analytical variations, were further measured by enzymatic assays. A score was calculated for their use as quality control markers. Results The pre-centrifugation temperature was shown to be critical in the stability of plasma samples and had a significant impact on metabolite concentration profiles. In contrast, pre-centrifugation delay had only a minor impact. Based on the results of this study, whole blood should be kept on wet ice and centrifuged within maximum 3 h as a prerequisite for preparing EDTA plasma samples fit for the purpose of metabolome analysis. Conclusions We have established a novel blood sample quality control marker, the LacaScore, based on the ascorbic acid to lactic acid ratio in plasma, which can be used as an indicator of the blood pre-centrifugation conditions, and hence the suitability of the sample for metabolome analyses. This method can be applied in research institutes and biobanks, enabling assessment of the quality of their plasma sample collections

    CAAP48, a New Sepsis Biomarker, Induces Hepatic Dysfunction in an in vitro Liver-on-Chip Model

    Get PDF
    Sepsis is a leading cause of mortality in the critically ill, characterized by life-threatening organ dysfunctions due to dysregulation of the host response to infection. Using mass spectrometry, we identified a C-terminal fragment of alpha-1-antitrypsin, designated CAAP48, as a new sepsis biomarker that actively participates in the pathophysiology of sepsis. It is well-known that liver dysfunction is an early event in sepsis-associated multi-organ failure, thus we analyzed the pathophysiological function of CAAP48 in a microfluidic-supported in vitro liver-on-chip model. Hepatocytes were stimulated with synthetic CAAP48 and several control peptides. CAAP48-treatment resulted in an accumulation of the hepatocyte-specific intracellular enzymes aspartate- and alanine-transaminase and impaired the activity of the hepatic multidrug resistant-associated protein 2 and cytochrome P450 3A4. Moreover, CAAP48 reduced hepatic expression of the multidrug resistant-associated protein 2 and disrupted the endothelial structural integrity as demonstrated by reduced expression of VE-cadherin, F-actin and alteration of the tight junction protein zonula occludens-1, which resulted in a loss of the endothelial barrier function. Furthermore, CAAP48 induced the release of adhesion molecules and pro- and anti-inflammatory cytokines. Our results show that CAAP48 triggers inflammation-related endothelial barrier disruption as well as hepatocellular dysfunction in a liver-on-chip model emulating the pathophysiological conditions of inflammation. Besides its function as new sepsis biomarker, CAAP48 thus might play an important role in the development of liver dysfunction as a consequence of the dysregulated host immune-inflammatory response in sepsis
    • …
    corecore