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Abstract: Automated identification of advanced chronic kidney disease (CKD ≥ III) and of no
known kidney disease (NKD) can support both clinicians and researchers. We hypothesized that
identification of CKD and NKD can be improved, by combining information from different electronic
health record (EHR) resources, comprising laboratory values, discharge summaries and ICD-10 billing
codes, compared to using each component alone. We included EHRs from 785 elderly multimorbid
patients, hospitalized between 2010 and 2015, that were divided into a training and a test (n = 156)
dataset. We used both the area under the receiver operating characteristic (AUROC) and under the
precision-recall curve (AUCPR) with a 95% confidence interval for evaluation of different classification
models. In the test dataset, the combination of EHR components as a simple classifier identified
CKD ≥ III (AUROC 0.96[0.93–0.98]) and NKD (AUROC 0.94[0.91–0.97]) better than laboratory
values (AUROC CKD 0.85[0.79–0.90], NKD 0.91[0.87–0.94]), discharge summaries (AUROC CKD
0.87[0.82–0.92], NKD 0.84[0.79–0.89]) or ICD-10 billing codes (AUROC CKD 0.85[0.80–0.91], NKD
0.77[0.72–0.83]) alone. Logistic regression and machine learning models improved recognition of CKD
≥ III compared to the simple classifier if only laboratory values were used (AUROC 0.96[0.92–0.99] vs.
0.86[0.81–0.91], p < 0.05) and improved recognition of NKD if information from previous hospital
stays was used (AUROC 0.99[0.98–1.00] vs. 0.95[0.92–0.97]], p < 0.05). Depending on the availability
of data, correct automated identification of CKD ≥ III and NKD from EHRs can be improved by
generating classification models based on the combination of different EHR components.
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1. Introduction

Chronic kidney disease (CKD) is a major public health concern characterized by an increasing
prevalence and associated with a high level of morbidity and mortality [1,2]. Correct identification
of CKD is crucial, e.g., for appropriate dosing of drugs and for early intervention, including the
prevention of progression [3]. For clinical research, accurate identification of CKD or absence of kidney
disease (NKD = no known kidney disease) is essential for clinical trials and epidemiological studies.
In this context, a particular challenge is to store samples from hospitalized patients with known kidney
status in clinical biorepositories, as part of Healthcare-Integrated Biobanking (HIB). At the time point
of sample selection and storage, only a limited range of information regarding the respective patient
phenotype is available.

Administrative data such as ICD-10 billing codes are often used in research trails to identify
patients with CKD [4]. However, administrative databases are not maintained with the primary
purpose of supporting research; thus, it might be that, e.g., mild impairment of kidney function will be
underrepresented because they cannot be billed [5]. Indeed, many studies have demonstrated that
ICD-10 billing codes considerably underestimate the prevalence of CKD [6]. Moreover, there is no
ICD-10 billing code for NKD, as the purpose of ICD-10 billing codes is to indicate the presence of
a disease.

Electronic health records (EHRs) are a promising source for the diagnosis or exclusion of CKD.
EHRs contain structured data (laboratory values, epidemiological data) and unstructured data (narrative
discharge summaries).

The laboratory assessment of kidney function is based on an equation to estimate the glomerular
filtration rate (GFR) [3]. This equation, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI),
includes the blood creatinine level, age, sex and ethnicity [7]. According to the Kidney Disease:
Improving Global Outcomes (KDIGO) definition, CKD Stage III and higher can be diagnosed by an
eGFR below 60 mL/min/1.73m2 for a time period of at least 90 days [3]. However, previous laboratory
data on hospitalized patients are often not fully available, e.g., they were recorded in other hospitals or
in outpatient clinics.

Unstructured data such as discharge summaries can fill the gap of missing medical information.
Letters are available in a digital form for every hospitalized patient and often contain complementary
information, not only about the current hospital stay, but also about the clinical history of the patient
including chronic diseases. Information can be extracted from narrative discharge summaries for
example by reusing SNOMED CT codes from EHRs [8], screening the letters for disease-specific
keywords [9,10], or using mL based natural language processing (NLP) technology for ICD-10 billing
codes [11] or SNOMED CT [12] coding, named entity recognition [13], or relation extraction [14].

Data analysis from EHRs can be performed in a rule-based format for example by strictly adhering
to the KDIGO definition of CKD ≥ III. In recent years, various machine learning (ML) methods have
been applied to improve the automated recognition of chronic kidney disease, using mainly laboratory
values and demographic information [15–20]. However, to the best of our knowledge, no study
specifically targeted advanced CKD ≥ III or NKD.

In this study, we hypothesize that combining structured (laboratory values, ICD-10 billing codes)
and unstructured (discharge summaries) information from EHRs and applying mL for data analysis
can reliably distinguish between patients with advanced CKD (stage ≥ III) and patients with no known
kidney disease (NKD) in different scenarios of data availability.

2. Materials and Methods

2.1. Study Population

The dataset of this retrospective study has been derived from the Jena Part of the 3000 PA
text corpus of the Smart Medical Information Technology for Healthcare (SMITH) consortium (part
of the Medical Informatics Initiative founded by the German Federal Ministry of Education and
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Research) [21–23]. The dataset consisted of EHRs from 785 individuals who were from European
descent and had an index hospital stay for at least five days on a ward for internal medicine or in an
intensive care unit between 2010 and 2015. No individual deceased during the index hospital stay.
At the time point of retrospective data collection, all individuals were deceased. The EHRs included
discharge summaries, laboratory values and ICD-10 billing codes. The study was approved by the local
ethics committee (4639-12/15); data were collected retrospectively and anonymized, individual-level
informed consent of participants was waived by the ethics review board. The study was also approved
by the data protection officer of Jena University Hospital.

2.2. Classification of CKD and NKD by ICD-10 Billing Codes

For classification of CKD and NKD, ICD-10 billing codes of the index hospital stay, extracted from
the hospital accounting system and from hospital discharge summaries, were used. For extraction of
kidney diseases from discharge summaries the Health Discovery text mining tool v5.7.0 from Averbis
(https://health-discovery.io/) was applied using the discharge pipeline with default settings to extract
basic medical information (detailed information can be found in the Averbis Health Discovery User
Manual Version 5.7, 4 December 2018). Subsequently, a Python script was applied to extract the ICD-10
billing codes from these output files. ICD-10 billing codes for CKD classification were used according
to ICD-10 billing codes for moderate to severe kidney disease from the Charlson comorbidity index [24]
(Supplementary Materials). For the definition of no kidney disease (NKD), none of these codes as well
as further ICD-10 billing codes for kidney disease published by the Centers for Disease Control and
Prevention (CDC, http://www.cdc.gov/ckd) (Supplementary Materials) should be present.

2.3. Laboratory and Demographic Data

Laboratory values and demographics of the patients were extracted from the laboratory information
system (LIS) of the University Hospital of Jena. The following values were considered in the analysis
and classification of the study cohort:

- Numerical variables: age, eGFR at admission, eGFR at discharge, eGFR over index hospital stay.
Measurements of albumin in urine were available in less than 5% of the cohort and therefore
excluded from further analysis.

- Categorical variable: sex.

Descriptive statistics were reported as the mean [SD] or median [I quartile–III quartile] for
continuous variables and absolute numbers (percentages) for categorical variables.

2.4. Classification of CKD and NKD by Blood Creatinine and eGFR

In order to define CKD and NKD by laboratory values from the current hospital index stay, we
created the following rules. If all eGFR values during the index stay were below 60 mL/min/1.73 m2,
the case was assigned to CKD. If all eGFR values during the index hospital stay were above
60 mL/min/1.73m2 and there was no presence of AKI (definition see below), the case was assigned
to NKD.

2.5. Classification of CKD and NKD by Manual Review

CKD stage III or higher was defined according to the KDIGO guidelines. This included an eGFR,
based on the formula CKD-EPI [7], which had to be less than 60 mL/min/1.73 m2 for at least 3 months
(90 days) or by an additional proof of kidney damage [3].

We defined NKD, adapted from James et al. [25], as the complete absence of GFR less than
60 mL/min/1.73m2, stable serum creatinine measurements, e.g., no fulfillment of acute kidney disease
criteria, median absence of proteinuria when multiple measurements were made before and the absence
of AKI in patient laboratory history. AKI was present, if serum creatinine had increased by more than
26.5 mmol/L within 48 h or increased more than 1.5-fold over 7 days [26]. In addition, adapted from

https://health-discovery.io/
http://www.cdc.gov/ckd
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the publication by Duff et al. [27], we included AKI recovery defined as a decline in creatinine for more
than 33% over 7 days.

All cases were reviewed by an advanced medical student and a physician to assess the underlying
kidney status based on individual EHRs, including discharge summaries, ICD-10 billing codes and
laboratory test results performed before, subsequent to, and during the index hospital stay. Of note,
for clarification of difficult cases, the reviewers used information not available to the rule-based or
statistical algorithms (e.g., laboratory values after index hospital stay). The review was used as a
reference standard for comparison with automated classification.

2.6. Dataset for the Machine Learning Methods

The dataset used for logistic regression and the different mL models is composed of 11 to 19 different
categorical and numerical variables. Three of them are derived variables to improve classification.

1. Numerical variables: age; first eGFR of the index hospital stay; last eGFR of the index hospital
stay; time difference between the first and last blood measurement of the index hospital stay as
an indicator for the length of hospital stay; mean eGFR over index hospital stay; mean eGFR over
all available laboratory values.

2. Due to the varying distribution of eGFR measurements, additionally derived numerical variables
were defined for usage in mL algorithms: the ratio between the number of hospital visits with
eGFR measurements and the number of total visits; the ratio between the number of total eGFR
measurements and hospital visits with eGFR measurements; the ratio between the number of
eGFR measurements lower than 60 mL/min/1.73 m2 and hospital visits with eGFR measurements.

3. Categorical variables: sex; occurrence of AKI and AKI recovery over laboratory history; occurrence
of AKI and AKI recovery over index stay.

All of these variables were used in all mL models. Further categorical variables, listed below,
were added in different combinations, as described in the results.

CKD: eGFR at admission below 60 mL/min/1.73 m2 (eGFR_admission), eGFR at discharge
below 60 mL/min/1.73 m2 (eGFR_discharge), and all eGFR measurements during index stay below
60 mL/min/1.73 m2 (eGFR).

NKD: eGFR at admission above 60 mL/min/1.73 m2 (eGFR_admission), eGFR at discharge above
60 mL/min/1.73 m2 (eGFR_discharge), eGFR always above 60 mL/min/1.73 m2 (eGFR_history), all
eGFR during index stay above 60 mL/min/1.73 m2 (eGFR); classification by ICD-10 billing codes (ICD);
classification by ICD-10 codes from discharge summaries.

2.7. Classification of CKD and NKD Using Machine Learning Methods

We applied three different mL methods—generalized linear model via penalized maximum
likelihood (GLMnet) [28], random forests (RF) [29] and artificial neural network (ANN) [30]. These are
all well-established approaches that represent different types of mL methods.

GLMnet is a statistical method in which different models generalize to the concept of a penalty
parameter and in which different models have different loss functions. A penalty parameter constrains
the size of the model coefficients such that the only way the coefficients can increase is if a comparable
decrease in the models loss function is experienced. A loss function essentially calculates how poorly a
model is performing by comparing what the model is predicting with the actual value it is supposed to
output. If both values are very similar, the loss value will be very low. There are three common penalty
parameters (ridge regression, lasso penalty, elastic-net penalty). We used the elastic-net penalty which
is controlled by the alpha parameter. It bridges the gap between the ridge regression (alpha = 0), which
is good for retaining all features while reducing the noise that less influential variables may create and
the lasso (alpha = 1) penalty, which actually excludes features from the model.

Like a simple rule-based decision tree, random forests are tree-based models and part of a class
of non-parametric algorithms that work by partitioning the feature space into a number of smaller
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regions. The predictions are obtained by fitting a simpler model in each region. Random forests use the
same principles as bagging trees, which grow many trees (ntree) on bootstrapped copies of the training
data, and extend it with an additional random component through split-variable randomization, where
each time a split is to be performed the search for the split variable is limited to a random subset (mtry)
of the original features.

Artificial neural networks are designed to simulate the biological neural networks of animal brains.
They process input examples of a given task and map them against the desired output by forming
probability-weighted associations between the two, storing these in the net data structure itself. In its
basic form a neural network has three layers. An input layer which consists of all of the original input
features, a hidden layer where the majority of the learning process takes place and an output layer [31].

The dataset was randomly split into 80% training and 20% test data. The prevalence for CKD or
NKD respectively was similar in the two datasets (Supplementary Materials).

To properly adapt the mL algorithms, we optimized the hyperparameters that are used to control
the learning process of a model and cannot be directly estimated from the data. We used a grid
search method, which is simply an exhaustive search through a manually specified subset of the
hyperparameter space of the learning algorithm. We specified these hyperparameters for every type
of model, trailed all combinations and selected the model with the best results (see Supplementary
Materials for details). For the GLMnet, the regularization parameter lambda, which controls the overall
strength of the penalty term and helps to control the model from overfitting to the training data, was
calculated during a pre-training of the model. Subsequently the best alpha parameter was determined.
It ranges between [0,1] and was divided into steps of 0.1.

Random forest was tuned on the mtry parameter in a range between [1,18] depending on the
number of features of the model, divided into steps of 1. The ntree parameter was set to its default
value ntree = 100.

The artificial neural network is a fully connected feed-forward network with a single hidden layer.
We use a fixed number of units between 11 and 19 in the input layer depending on the number of
features of the model and a single unit with a sigmoid activation function for binary classification as
the output layer. We optimized the number of units in the hidden layer as a hyperparameter (size) for
every model in a range between [1,10] divided into steps of 1 (see Supplementary Materials for details).

In addition, all models were evaluated using three separate 10-fold cross-validations as the
resampling scheme and were trained to optimize the F1 score. The final F1 score for each model is
averaged over the resamples.

Classifications were assessed using sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), F1 score, accuracy, area under the receiver operating characteristics (AUROC)
and precision-recall curve (AUCPR). For AUROC and AUCPR, the 95% confidence interval was
calculated (see Supplementary Materials for formulas and for detailed classification performances
regarding the different models).

Area under the precision–recall curve is known to be more informative for class-imbalanced
predictive tasks [32], as it is more sensitive to changes in the number of false-positive predictions.
Comparison between AUROC was calculated according to DeLong et al. [33].

Analyses were implemented using R Studio (version 1.2.5001), the R Software (version 3.6.1) [34]
and the following packages: limma [35] for plots, rio [36], plyr [37], nlme [38], tidyverse bundle [39],
pROC [40], ROCR [41] for data management, data analysis and functional programming and caret [42]
for all mL models. Graphs were generated by GraphPad Prism (version 8.4.2).

3. Results

The study cohort comprises 785 cases, with an average age of 75 years, the majority of individuals
were male (61%), and 95% and 49% of the patients had at least one or three severe disease(s) of the
Charlson comorbidity index, respectively. Most patients were hospitalized due to cardiovascular
disease (40%), gastrointestinal/liver diseases (15%) or oncology disorders (15%). The prevalence of



J. Clin. Med. 2020, 9, 2955 6 of 19

CKD in this elderly morbid cohort was comparable to other studies that included probably less morbid
non-hospitalized patients ([43,44]). The prevalence for patients with no known kidney disease (NKD)
was lower than for CKD. NKD was associated with younger age, better kidney function and fewer
co-morbidities compared to CKD ≥ III. (Table 1).

Table 1. Epidemiological Characteristics from all Individuals and from Individuals with CKD ≥ III or
NKD Identified by the Reference Standard, Respectively.

Characteristics Cohort (n = 785) CKD ≥ III (n = 373) NKD (n = 129)

Age, years, mean [SD] 74.6
[12.2]

77.9
[10]

68.4
[13.7]

Sex, male 476
(60.6%)

215
(57.6%)

79
(61.2%)

eGFR at admission,
median, [quartiles], mL/min/1.73 m2

(n = 780) 1

49.6
[28.6–77.3]

(n = 372) 1

28.9
[18.1–41.8]

88.6
[78.5–99.6]

(n = 748)
Charlson morbidity category ≥1 711 (95.3%) 366 (98.1%) 113 (87.6%)
≥3 387 (49.3%) 224 (60.1%) 36 (27.9%)
Median 2 3 2
Myocardial infarction 128 (16.3%) 75 (20.1%) 11 (8.5%)
Chronic heart failure 419 (54.4) 247 (66.2%) 33 (25.6%)
Peripheral vascular disease 131 (16.7%) 75 (20.1%) 17 (13.2%)
Cerebrovascular disease 51 (6.5%) 28 (7.5%) 7 (5.4%)
Dementia 31 (3.9%) 18 (4.8%) 4 (3.1%)
Chronic pulmonary disease 183 (23.3%) 73 (16.9%) 23 (17.8%)
Rheumatic diseases 13 (1.7%) 4 (1.1%) 3 (2.3%)
Peptic ulcer disease 21 (2.7%) 11 (2.9%) 1 (0.8%)
Hemiplegia or paraplegia 29 (3.7%) 8 (2.1%) 6 (4.7%)
Liver disease 137 (17.5%) 44 (11.8%) 35 (25.1%)
Diabetes mellitus 332 (42.3%) 152 (40.7%) 51 (39.5%)
Any malignancy 137 (17.5%) 32 (8.6%) 38 (29.5%)
Hypertension 567 (72.3%) 270 (72.4%) 93 (72.1%)
Major cause for admission
Infectious diseases 58 (7.4%) 28 (7.5%) 6 (4.7%)
Oncology disorders 119 (15.2%) 30 (8.0%) 34 (26.4%)
Cardiovascular 315 (40.1%) 192 (51.5%) 40 (31.0%)
Diseases
Pulmonary diseases 82 (10.4%) 25 (6.7%) 12 (9.3%)
Gastrointestinal 118 (15.0%) 35 (9.4%) 27 (20.9%)
and liver diseases
Kidney diseases 47 (6.0%) 36 (9.7%) 2 (1.6%)
other 46 (5.9%) 27 (7.2%) 8 (6.2%)

1 eGFR at admission could not be calculated for all individuals because creatinine was massively interfered with by
bilirubin or hemoglobin at admission.

In 128 (34%) of patients, the cause of CKD ≥ III was further specified by ICD-10 billing codes. In
the remaining cohort of 245 patients with CKD ≥ III, 90% suffered from diabetes mellitus II and/or
hypertension. More than 33% of etiologies for CKD ≥ III had been documented only in discharge
summaries (Supplementary Materials).

There was a high incidence for AKI (33.6%) and AKI recovery (27.4%) in the CKD ≥ III cohort
(Supplementary Materials).

Most patients were assigned to CKD status by discharge summaries, followed by eGFR and
ICD-10 billing codes (Figure 1a). After manual review, less than 1% of the CKD cases identified by
discharge summaries and eGFR and ICD-10 billing codes did not suffer from CKD III–V (Figure 1b).
Patients identified by discharge summaries seemed to have a better kidney function at admission, while
patients assigned to CKD by eGFR or ICD-10 billing codes had a worse kidney function compared
to the reference standard. Similarly, patients identified by eGFR and discharge summaries were less
morbid than patients characterized as CKD by ICD-10 billing codes, as indicated by Charlson morbidity
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categories (Table 2). Of note, 19 patients were identified by manual review only, while each of the three
formal criteria failed.
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Figure 1. Venn diagrams comparing identification of CKD ≥ III by laboratory results (eGFR values),
discharge summaries or ICD -10 billing codes within all patients (a) and within patients with CKD ≥ III
according to reference standard (b). (a) Numbers of patients from the study cohort with CKD recognized
by laboratory results (eGFR values), discharge summaries or ICD-10 billing codes. (b) Numbers of
patients from the study cohort with CKD correctly recognized by laboratory results (eGFR values),
discharge summaries or ICD -10 billing codes. A total of 19 patients were recognized by neither of the
three formal criteria, but by manual review only.

Table 2. Epidemiological characteristics from patients with CKD identified by reference standard or
recognized by laboratory results (eGFR values), discharge summaries or ICD-10 billing codes.

Characteristics Reference
Standard (n = 373)

eGFR
(n = 333)

Discharge Summaries
(n = 421)

ICD-10 Billing
Codes (n = 300)

Age, years, mean [SD] 77.9
[10]

78.0
[9.7]

76.4
[10.9]

77.2
[10.3]

Sex, male 215
(57.6%)

189
(56.8%)

258
(61.3%)

182
(60.7%)

eGFR at admission,
median,
[quartiles], mL/min/1.73 m2

(n = 372) 1

28.9
[18.1–41.8]

26.8
[17.5–39.4]

(n = 420) 1

32.9
[19.6–50]

25.7
[15.2–39.6]

Charlson morbidity category
≥1 366 (98.1%) 326 (97.9%) 413 (98.1%) 297 (99%)

≥3 224 (60.1%) 198 (59.5%) 257 (61.1%) 220 (73.3%)
Median 3 3 3 3

1 eGFR could not be calculated for all individuals because creatinine was massively interfered with by bilirubin or
hemoglobin at admission.

Similar to CKD, the patient cohort was investigated for patients with no known kidney disease
(NKD). Numbers of patients assigned to NKD by laboratory values, ICD-10 billing codes or discharge
summaries are depicted in Figure 2a. Comparison with the reference standard (Figure 2b) confirms
65% of the patients assigned to NKD by all three categories. Patients identified by the laboratory NKD
criteria were younger, had a higher eGFR at admission and did therefore better correspond with the
reference standard compared to patients assigned to NKD by discharge summaries or ICD-10 billing
codes (Table 3).
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Figure 2. Venn diagrams comparing identification of no known kidney disease (NKD) by laboratory
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Table 3. Epidemiological characteristics from patients with NKD identified by reference standard or
recognized by sources laboratory results (eGFR values), discharge summaries or ICD-10 billing codes.

Chracteristics Reference
Standard (n = 129)

eGFR
(n = 253)

Discharge
Summaries

(n = 334)

ICD-10 Billing
Codes (n = 437)

Age, years, mean [SD] 68.4
[13.7]

69.3
[13.3]

72.9
[13.3]

73.3
[13.0]

Sex, male 79
(61.2%)

161
(63.6%)

196
(58.7%)

265
(60.6%)

eGFR at admission,
median,
[quartiles], mL/min/1.73 m2

88.6
[78.6–99.3]

84.5
[75.7–96.2]

76.0 *,1

[53.8–89.5]
69.9 *,2

[50.0–87.7]

Charlson morbidity score ≥1 113 (87.6%) 232 (91.7%) 308 (92.2%) 403 (92.2%)
≥3 36 (27.9%) 91 (36.0%) 116 (34.7%) 145 (33.2%)
Median 2 2 2 2

* eGFR could not be calculated for all individuals because creatinine was massively interfered with by bilirubin or
hemoglobin at admission. 1 n = 331; 2 n = 434.

Tables 4 and 5 depict the specificities and sensitivities of the different rules applied for identification
of CKD or NKD, respectively. While ICD-10 billing codes show excellent specificity for identification
of CKD, the sensitivity was lower compared to discharge summaries and eGFR. Discharge summaries
had a better sensitivity, but a reduced specificity compared to ICD-10 billing codes (Table 4). Using
eGFR < 60 mL/min/1.73 m2 during the whole hospital stay results in good sensitivity and specificity.
If only the first eGFR at admission or the last eGFR measurement at discharge were used, overall
performance (AUROC) did only minimally change compared to the original rule.
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Table 4. Performance of different rules for identification of patients with CKD compared to the
reference standard.

Category Sensitivity Specificity PPV NPV AUROC (CI) AUCPR (CI)

ICD-10 billing codes 0.71 0.91 0.88 0.78 0.81
(0.78–0.84)

0.86
(0.83–0.90)

Discharge summary 0.86 0.76 0.76 0.86 0.81
(0.78–0.84)

0.84
(0.81–0.88)

eGFR <60 mL/min/1.73 m2 during
Index hospital stay

0.81 0.92 0.91 0.84 0.87
(0.84–0.90)

0.90
(0.87–0.93)

eGFR_at_admission
<60 mL/min/1.73 m2 0.96 0.75 0.77 0.95 0.85

(0.83–0.87)
0.88

(0.84–0.91)

eGFR_at_discharge
<60 mL/min/1.73 m2 0.91 0.82 0.82 0.91 0.86

(0.84–0.89)
0.89

(0.85–0.92)

Table 5. Performance of different rules for identification of patients with NKD compared to the
reference standard.

Category Sensitivity Specificity PPV NPV AUROC
(CI)

AUPR
(CI)

ICD-10 billing codes 0.99 0.53 0.29 1
0.76 0.64

(0.74–0.78) (0.56–0.73)

Discharge summary 0.98 0.68 0.38 1
0.83 0.68

(0.81–0.86) (0.60–0.76)

eGFR ≥ 60 mL/min/1.73m2 during
Index hospital stay

1.00 0.82 0.52 1 0.91
(0.89–0.92)

0.75
(0.68–0.83)

eGFR_at_admission
≥ 60 mL/min/1.73 m2 1.00 0.71 0.41 1.00 0.86

(0.84–0.87)
0.70

(0.62–0.78)

eGFR_at_discharge
≥ 60 mL/min/1.73 m2 1.00 0.64 0.35 1.00 0.82

(0.80–0.84)
0.68

(0.59–0.76)

Regarding NKD, ICD-10 billing codes, discharge summaries and creatinine blood values, at
admission, at discharge and during hospital stay, have all excellent sensitivity. However, acceptable
specificity (>80%) was achieved only by using eGFR < 60 mL/min/1.73m2 during the whole hospital
stay. However, the PPV was still low at 0.52 (Table 5).

Combining laboratory measurements with discharge summaries and ICD-10 billing codes using
logistic regression developed in a training dataset resulted in a better overall performance for
identification of CKD (AUROC: 0.96[0.93–0.98]) or NKD (AUROC: 0.94[0.91–0.97]) in the test dataset
compared to estimated glomerular filtration rate (eGFR) values (CKD: AUROC 0.85[0.79–0.90];
NKD: AUROC 0.91[0.87–0.94]), discharge summaries (CKD: AUROC 0.87[0.82–0.92], NKD: AUROC
0.84[0.79–0.89]) or ICD-10 billing codes (CKD: AUROC 0.85[0.80–0.91], NKD: AUROC 0.77[0.72–0.83)
alone (Figure 3 and Supplementary Materials). Interestingly, the combination of all three categories,
however, did not (NKD) or only minimally (CKD ≥ III) increase the performance in comparison with
the combination of laboratory results and discharge summaries (CKD: AUROC 0.94[0.9–0.97]; NKD:
AUROC 0.95[0.92–0.97]).
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Figure 3. Area under the receiver operating characteristic (AUROC) and under the precision-recall
curve (AUCPR) for simple categorical classifiers based on combinations of EHR components for CKD
≥ III (a) and NKD (b) on the test dataset. eGFR values = “eGFR”, discharge summaries = “DS” and
ICD-10 billing codes = “ICD”. For the complete list of all combinations, see Supplementary Materials.
Logistic regression was calculated on the training dataset. Performance is calculated on the test dataset
(n = 156). * Indicates p < 0.05 for difference in AUROC compared to eGFR.

In NKD, AUROC values were quite high. However, AUCPR values that include sensitivity and
PPV were lower. It is therefore helpful to include several parameters, e.g., AUROC and AUCPR for
assessing test performance, particularly in imbalanced data [32].

To further improve performance for correct assignment of patients to CKD ≥ III or NKD, we
developed a logistic regression and three mL models using (1) all data from the index hospital stay
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including laboratory values with incidence of AKI and AKI recovery including staging, demographics,
ICD-billing codes and ICDs from discharge summaries; (2) laboratory values and demographics from
the index hospital stay; (3) and (4) in addition to (1) or (2) includes laboratory values from previous
hospital stays, respectively (for a detailed listing of variables, see Supplementary Materials).

Figure 4 shows the AUROCs and AUCPRs of the respective best logistic regression (LR) and best
different mL models for identification of CKD ≥ III and NKD compared to the best simple categorical
classifier for each scenario. In general, AUROCs of LR and of the different mL models were only
slightly different between each other (see Supplementary Materials for more details).
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Figure 4. AUROC (a,c) and AUCPR (b,d) of the simple categorical classifier and of models calculated
from logistic regression and the three mL methods for identification of CKD (a,b) and NKD (c,d) in
different scenarios of data availability. (a) AUROC and (b) AUCPR for identification of CKD ≥ III; (c)
AUROC and (d) AUCPR for identification of NKD. SC = simple categorical classifier, LR = logistic
regression, GLMnet = generalized linear machine network, RF = random forest, NN = Artificial
Neuronal Network. N = 156 patients (test dataset). Scenarios: (1) All data from the index hospital stay
including laboratory values, demographics, ICD-billing codes and ICDs from discharge summaries; (2)
laboratory values and demographics from the index hospital stay; (3) and (4) includes, in addition to (1)
or (2), laboratory values from previous hospital stays, respectively. * Indicates p < 0.05 for difference in
AUROC between SC and all other models.
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For identification of CKD ≥ III, the AUROCs of the LR and machine learning models were
not significantly better in scenario 1 (LR/ML: 0.97[0.95–1.00]) and scenario 3 (LR/ML: 0.97[0.94–1.00)
compared to the simple classifier in scenario 1 and 3 (0.96[0.94–0.99]), respectively. AUROCs of
the LR and mL models significantly (p < 0.05) improved in scenario 2 (LR/ML: 0.96[0.92–0.99) and
scenario 4 (LR: 0.96[0.93–0.99]/ML 0.97[0.94–0.99]) compared to the simple classifier in scenario 2 and 4
(0.86[0.81–0.91]), respectively. In scenarios 2 and 4, data were restricted to laboratory values alone.

For identification of NKD, AUROCs of the LR and mL models significantly (p < 0.05) improved
in scenario 3 (LR: 0.98[0.96–1.00]/ML: 1.00[1.00–1.00]) and scenario 4 (LR: 0.98[0.96–1.00]/ML:
0.99[0.98–1.00]) compared to the simple classifier in scenario 3 (0.95[0.92–0.97]) and scenario 4
(0.91[0.87–0.94]), respectively (Figure 4c). In scenarios 3 and 4, data from previous hospital stays were
included. AUCPRs of the logistic regression and mL models for identification of NKD also improved
in scenarios 3 and 4 compared to the simple classifier (Figure 4d, see Supplementary Materials for
more details). AUROCs of LR and mL models slightly improved in scenario 1 (LR/ML: 0.96[0.93–0.99])
and scenario 2 (LR/ML: 0.93[0.89–0.97]) compared to the simple classifier in scenario 1 (0.95[0.92–0.97])
and scenario 2 (0.91[0.87–0.94]), respectively (Figure 4c). However, AUCPR of LR and mL models
decreased in scenario 1 and 2 compared to the simple classifier.

In conclusion, the best LR and mL models slightly improved AUROCs for identification of CKD ≥
III and NKD compared to the best simple categorical classifier in each scenario. However, we observed
a significant improvement by models compared to the simple classifier for CKD > III only in scenarios
2 and 4 and for NKD only in scenarios 3 and 4.

4. Discussion

The results of our study demonstrate that laboratory values have the best performance for
identifying CKD ≥ III and NKD from EHRs compared to discharge summaries and ICD-10 billing codes
in an elderly multimorbid cohort of hospitalized patients. Combining classifiers based on laboratory
values (creatinine/eGFR), ICD-10 billing codes or ICD-10 codes extracted from discharge summaries
outperformed each component alone for identification of CKD ≥ III and NKD. Classification could
be further improved by calculation of logistic regression and mL models if data were restricted to
laboratory values (CKD ≥ III) or if additional values from previous hospital stays were added (NKD).

Although each of the mentioned EHR components have been investigated before, we could
demonstrate the extent to which the classification is improved by combining laboratory values with
ICD-10 billing codes and discharge summaries. Furthermore, we are the first, to our knowledge, to
describe classification performance for NKD.

The good sensitivity and specificity of laboratory values for the identification of CKD ≥ III and
NKD can be explained by the fact that both entities are mainly defined by blood creatinine and
eGFR values [3,26]. However, many epidemiological studies and clinical trials have utilized ICD-10
billing codes for defining CKD status [4]—more than 50% of cardiovascular trials do not report eGFR
measurement in respective study populations [45].

Previous studies have demonstrated a high specificity of billing codes. However, many CKD
patients will be overlooked by using billing codes alone and the identified cohort is biased towards
more advanced CKD stages with higher creatinine values [5,46,47]. These results have been replicated
and confirmed in the current study. A sensitivity of 75% indicates that approximately one-quarter
of patients with advanced CKD ≥ III had been missed by ICD-10 billing codes. Patients recognized
by ICD-10 billing codes had a lower eGFR and showed a higher morbidity in comparison to the
reference standard.

However, the sensitivity of ICD-10 billing codes was much better in our study than in a recent
study by Diamantidis et al. who reported a very low sensitivity of ICD-10 billing codes for recognizing
CKD > III [43]. The discrepancy might be explained by differences in the patient cohorts as the latter
study included non-hospitalized patients.
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Gomez-Salgado et al., in contrast, recently showed good correlation between ICD-10 billing
codes and researchers’ judgment based on clinical documentation [48]. A possible explanation for the
conflicting results between our study and Gomez-Salgado et al. could be the extent to which laboratory
values were considered for identification of CKD.

Our study also confirms previous findings of slight under-documentation of CKD using discharge
summaries [49]. Indeed approximately 20% of patients with advanced CKD ≥ III were not identified
by discharge summaries. However, in line with the study of Singh et al., we could also show that the
sensitivity of discharge summaries is higher than the sensitivity of billing codes for CKD [9]. The
reduced specificity of discharge summaries could be explained by the fact that many patients with
CKD stage I and II were counted as CKD ≥ III. Differing definitions for chronic kidney disease might
also be the reason why a recent study by Hernandez-Boussard et al. observed a better accuracy for
unstructured discharge summaries for recognizing CKD compared to our study [50]. Other possible
explanations are different information sources and a different study cohort.

In a study by Nadkarni et al., an algorithm was developed and evaluated to identify patients with
CKD Stage III caused by hypertension or diabetes, using structured and unstructured information from
EHRs [51]. The algorithm based on keywords from medical notes and laboratory values outperformed
phenotyping by ICD-10 billing codes by a margin. These results resonate with the outcome of our
study that included advanced CKD from any cause in hospitalized patients.

Missing previous health records is a common problem in clinical studies and might affect correct
identification of diseases [52]. However, in contrast to the identification of patients with diabetes
mellitus [53], we can demonstrate good F1 score (>0.8), although using datasets restricted to the
current hospital stay for simple classifiers. For CKD ≥ III, mL models based on laboratory values
alone had a similar AUROC as the simple categorical classifiers including discharge summaries and
ICD-10 billing codes. This indicates that mL models might be able to—at least partly—compensate for
missing information.

The results of our study are encouraging, not only for stratification of patients for clinical and
epidemiological studies, but also in the context of, e.g., Healthcare-Integrated Biobanking, where
automated classifiers based on minimal clinical information are of great importance for early selection
of samples of specific disease entities.

Structured information such as laboratory values and billing codes are often readily available.
Results from our study show that a PPV of 0.77, 0.82 or 0.91 can be achieved for the identification of
CKD by using eGFR values at admission, at discharge or from the complete hospital stay, respectively.
This is in line with other studies demonstrating that a single measurement of eGFR might overestimate
the number of CKD cases [54]. The slightly higher PPV when using eGFR values at discharge compared
to admission can be explained by the fact that interfering acute kidney injury is more likely to be
present at admission than after a successful treatment at discharge.

Suboptimal PPV values associated with false classification can significantly impact the phenotyping
process and thus might cause severe bias in the outcomes of subsequent studies. Consequently, there
is a need for further optimization of CKD and NKD classification.

Wei et al. combined different sources of information (primary notes, medication and billing
codes) to improve phenotyping based on EHR for several chronic diseases (not CKD though) and
demonstrated that PPV and F1 score can be increased by combining different information sources [55].
Results from Wei et al. can be confirmed in our study in relation to CKD and NKD with the caveat that
eGFR should be included in any combination.

The addition of discharge summaries and/or ICD-10 billing codes to laboratory values not only
increases the performance of correct identification of CKD ≥ III but also helped to further specify the
cause of the disease in at least one-third of the cohort. There were more etiologies for CKD in the
discharge summaries compared to the ICD-10 billing codes.

Another novelty of this study is that, to the best of the authors’ knowledge, for the first time
the entity of NKD (no known kidney disease) was investigated using EHRs. Identifying NKD is a
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challenging task because ICD-10 billing codes and discharge summaries are designed to describe the
presence of illness rather than its absence. However, the question of NKD might be of particular interest
for scientific reasons. The validity of association studies and clinical trials depends on the correct
assignment of co-morbidities. If large cohorts of CKD patients are counted as NKD, studies might be
biased and results might thus be flawed. Our study demonstrates that single EHR sources had low PPV
and AUCPR for NKD assignment. Combining laboratory values with discharge summaries improved
PPV and AUCPR. Interestingly, the further addition of ICD-10 billing codes to this combination did
not result in a further improvement of PPV and AUCPR. Future epidemiological studies should take
these results in consideration for classification of NKD.

Finally, we demonstrated that logistic regression and mL algorithms have the potential to improve
recognition of CKD ≥ III and NKD, particularly in certain scenarios of data availability. This might
be helpful for the development of clinical decision support systems (CDSS) in the near future that
ultimately will allow clinicians and researches almost instantly to evaluate the chronic kidney status
of patients.

Direct comparison with other studies applying mL strategies for the detection of CKD is hampered
due to different definitions of CKD, different patient cohorts and data variables used. Almansour et al.
described an Artificial Neural Network with an accuracy of more than 99% [20]. Salekin et al. used the
same cohort and reduced the number of variables down to 12 and achieved an F1 score of 99% by using
a wrapper approach to identify the best subset of attributes and a random forest classifier [56]. However,
both studies rely on the same data source comprising 24 variables of 400 patients to build a predictive
model. In contrast to our study, the dataset does not include series of creatinine measurements or
information from discharge summaries or ICD-10 billing codes about CKD. Rashidian et al. used
laboratory values, demographics and ICD-10 billing codes to identify patients with CKD achieving
a F1 score of approximately 0.8 [57]. In our study, AUROC and AUCPR for identification of CKD
from mL algorithms surpassed 0.95 in all scenarios of unrestricted or restricted data availability. One
reason for these differences could be that the study by Rashidian et al. did not use discharge letters
as source of information. As mentioned before, in our study discharge summaries can add valuable
information to the classification process. This is also reflected by the result that mL algorithms did not
significantly improve performance of CKD ≥ III identification (AUROC 0.97) compared to a simple
classifier based on laboratory values, discharge summaries and ICD-10 billing codes (AUROC 0.96).

The mL algorithms used in our study failed to outperform rule-based classifiers for identification
of NKD if data were restricted to the index hospital stay: although AUROC is (non-significantly)
increasing, PPV is declining and thus superiority of the models has to be rejected. An explanation
for this result could be that the correct assignment of NKD mainly depends on the availability of the
complete dataset. Additionally, we cannot exclude that the low prevalence of NKD in our morbid
patient cohort affected the efficacy of mL strategies.

To the best of our knowledge, this is the first study trying to detect specifically CKD Stage ≥ III
and NKD by mL methods. Therefore, it is mandatory that the proof-of-concept presented here needs
further elaboration in larger independent patient cohorts.

The strength of the study is the comprehensive dataset including discharge summaries of the
index hospital stay and laboratory values with a reviewed reference standard.

Several limitations need to be acknowledged. The patient cohort included in the study was
quite morbid and not representative of a general hospital population or, even more so, an outpatient
population. Therefore, the extent of improvement by combining different information sources needs to
be prospectively validated in other independent cohorts.

The Averbis Health Discovery software tool was used for the extraction of information attributes
from discharge summaries that have been predefined by the authors. The use of natural language
processing (NLP) methods for information extraction and automated feature selection could have
resulted in an increased performance of the data extraction method.
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Similarly, the total number of patients was rather small for training mL classifiers. We may
guess that, in a larger patient cohort, the performance of the different models might further increase.
However, the scope of the present study was to demonstrate the feasibility and potential of using
eHealth sources and mL models to improve phenotyping of CKD and NKD.

The models presented in this manuscript focus on the detection of advanced CKD (Stage III or
higher) or on the absence of kidney disease. Patients with mild CKD (Stage I and II) are not taken
into consideration although the correct identification of this group might be important for clinical
treatment and research purpose. Future studies with larger patient cohorts might be able to develop
more granular models differentiating between mild and advanced CKD.

Another limitation is that neither a single rule nor a combination of them achieved a sensitivity
for identification of CKD ≥ III of 100%. This could be explained by the fact that most patients were
treated primarily for non-nephrological reasons during the index hospital stay and thus CKD was not
mentioned at all in the current discharge summaries or by the ICD-10 billing codes, although they had
a documented eGFR < 60 mL/min/1.73m2 for a period longer than 90 days.

Furthermore, data included in the analysis were incomplete, since laboratory results from primary
care or other institutions (for example, from general practitioners or other hospitals) were not available.
Most importantly albuminuria was available in less than 5% of the whole cohort and could therefore
not included in the analysis.

Missing data, however, reflects “real-world” conditions. Missing data can be, at least partly,
compensated for—as shown in our study—by the extraction of unstructured information from
the discharge summaries that usually contain a multitude of pre-existing health data from other
healthcare providers.

5. Conclusions

In summary, combining laboratory results (creatinine and eGFR) with discharge summaries and
ICD-10 billing codes had the best performance in a simple categorical classifier for phenotyping of
CKD ≥ III and NKD. Logistic regression or mL models had the potential to further improve the correct
identification of CKD ≥ III if only laboratory values were used and of NKD if data from previous
hospital stays were included into models.
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