268 research outputs found

    Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    Get PDF
    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed

    Analysis of cylindrical wrap-around and doubly conformal patch antennas by way of the finite element-artificial absorber method

    Get PDF
    The goal of this project was to develop analysis codes for computing the scattering and radiation of antennas on cylindrically and doubly conformal platforms. The finite element-boundary integral (FE-BI) method has been shown to accurately model the scattering and radiation of cavity-backed patch antennas. Unfortunately extension of this rigorous technique to coated or doubly curved platforms is cumbersome and inefficient. An alternative approximate approach is to employ an absorbing boundary condition (ABC) for terminating the finite element mesh thus avoiding use of a Green's function. A FE-ABC method is used to calculate the radar cross section (RCS) and radiation pattern of a cavity-backed patch antenna which is recessed within a metallic surface. It is shown that this approach is accurate for RCS and antenna pattern calculations with an ABC surface displaced as little as 0.3 lambda from the cavity aperture. These patch antennas may have a dielectric overlay which may also be modeled with this technique

    phi meson production in d plus Au collisions at root s(NN)=200 GeV

    Get PDF
    The PHENIX Collaboration has measured phi meson production in d + Au collisions at root s(NN) = 200 GeV using the dimuon and dielectron decay channels. The phi meson is measured in the forward (backward) d-going (Au-going) direction, 1.2 \u3c y \u3c 2.2 (-2.2 \u3c y \u3c -1.2) in the transverse-momentum (pT) range from 1-7 GeV/c and at midrapidity vertical bar y vertical bar \u3c 0.35 in the p(T) range below 7 GeV/c. The phi meson invariant yields and nuclear-modification factors as a function of p(T), rapidity, and centrality are reported. An enhancement of phi meson production is observed in the Au-going direction, while suppression is seen in the d-going direction, and no modification is observed at midrapidity relative to the yield in p + p collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor, indicating similar cold-nuclear-matter effects

    Centrality-Dependent Modification of Jet-Production Rates in Deuteron-Gold Collisions at root s(NN)=200 GeV

    Get PDF
    Jet production rates are measured in p + p and d + Au collisions at root s(NN) = 200 GeV recorded in 2008 with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed using the R = 0.3 anti-k(t) algorithm from energy deposits in the electromagnetic calorimeter and charged tracks in multiwire proportional chambers, and the jet transverse momentum (p(T)) spectra are corrected for the detector response. Spectra are reported for jets with 12 \u3c p(T) \u3c 50 GeV/c, within a pseudorapidity acceptance of vertical bar eta vertical bar \u3c 0.3. The nuclear-modification factor (R-dAu) values for 0%-100% d + Au events are found to be consistent with unity, constraining the role of initial state effects on jet production. However, the centrality-selected RdAu values and central-to-peripheral ratios (R-CP) show large, p(T)-dependent deviations from unity, challenging the conventional models that relate hard-process rates and soft-particle production in collisions involving nuclei

    Systematic study of charged-pion and kaon femtoscopy in Au plus Au collisions at root s(NN)=200 GeV

    Get PDF
    We present a systematic study of charged-pion and kaon interferometry in Au + Au collisions at root s(NN) = 200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations

    Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV

    Full text link
    The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.Comment: 387 authors from 63 institutions, 10 pages, 6 figures, 1 table. Submitted to Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment has measured ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV using the dimuon and dielectron decay channels. The ϕ\phi meson is measured in the forward (backward) dd-going (Au-going) direction, 1.2<y<2.21.2<y<2.2 (2.2<y<1.2-2.2<y<-1.2) in the transverse-momentum (pTp_T) range from 1--7 GeV/cc, and at midrapidity y<0.35|y|<0.35 in the pTp_T range below 7 GeV/cc. The ϕ\phi meson invariant yields and nuclear-modification factors as a function of pTp_T, rapidity, and centrality are reported. An enhancement of ϕ\phi meson production is observed in the Au-going direction, while suppression is seen in the dd-going direction, and no modification is observed at midrapidity relative to the yield in pp++pp collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version accepted for publication in Phys. Rev. C. Data tables for the points plotted in the figures are given in the paper itsel

    Inclusive cross section and single-transverse-spin asymmetry for very forward neutron production in polarized p+p collisions at sqrt(s)=200 GeV

    Full text link
    The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.Comment: 383 authors, 16 pages, 18 figures, 6 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Cross sections and double-helicity asymmetries of midrapidity inclusive charged hadrons in p+p collisions at sqrt(s)=62.4 GeV

    Full text link
    Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p+p collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 < p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with recent global parameterizations disfavoring large gluon polarization.Comment: PHENIX Collaboration. 447 authors, 12 pages, 5 figures, 5 tables. Submitted to Physical Review
    corecore