943 research outputs found

    Effects of Porous Mesh Groynes on Macroinvertebrates of a Sandy Beach, Santa Rosa Island, Florida, U.S.A.

    Get PDF
    The use of porous mesh groynes to accrete sand and stop erosion is a relatively new method of beach nourishment. Five groyne, five intergroyne, and five control transects outside the groyne area on a beach near Destin, FL were sampled during the initial 3 mo after installment of groynes for Arenicola cristata (polychaete) burrow numbers, benthic macroinvertebrate numbers, and dry mass. Salinity, temperature, turbidity, and current velocity were measured at one location within the groyne site and control site. Current velocity was reduced and sand was accreted in the groyne site relative to the control site. Few significant changes or interactions (time X site) were found. Coquina (Donax), mole crab (Emerita), and several species of polychaete were not eliminated near groynes after installation of the groyne field. Arenicola cristata (polychaete) burrow numbers were higher near groynes. This is in contrast to dramatic changes often noted in the first few months after other types of beach nourishment techniques, such as sand pumping, where fauna can be completely eliminated

    An assessment of the strength of knots and splices used as eye terminations in a sailing environment

    Get PDF
    Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Renormalization of composite operators

    Get PDF
    The blocked composite operators are defined in the one-component Euclidean scalar field theory, and shown to generate a linear transformation of the operators, the operator mixing. This transformation allows us to introduce the parallel transport of the operators along the RG trajectory. The connection on this one-dimensional manifold governs the scale evolution of the operator mixing. It is shown that the solution of the eigenvalue problem of the connection gives the various scaling regimes and the relevant operators there. The relation to perturbative renormalization is also discussed in the framework of the ϕ3\phi^3 theory in dimension d=6d=6.Comment: 24 pages, revtex (accepted by Phys. Rev. D), changes in introduction and summar

    Effective swimming strategies in low Reynolds number flows

    Full text link
    The optimal strategy for a microscopic swimmer to migrate across a linear shear flow is discussed. The two cases, in which the swimmer is located at large distance, and in the proximity of a solid wall, are taken into account. It is shown that migration can be achieved by means of a combination of sailing through the flow and swimming, where the swimming strokes are induced by the external flow without need of internal energy sources or external drives. The structural dynamics required for the swimmer to move in the desired direction is discussed and two simple models, based respectively on the presence of an elastic structure, and on an orientation dependent friction, to control the deformations induced by the external flow, are analyzed. In all cases, the deformation sequence is a generalization of the tank-treading motion regimes observed in vesicles in shear flows. Analytic expressions for the migration velocity as a function of the deformation pattern and amplitude are provided. The effects of thermal fluctuations on propulsion have been discussed and the possibility that noise be exploited to overcome the limitations imposed on the microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure

    Magnetism, chemical spots, and stratification in the HgMn star ϕ Phoenicis

    Get PDF
    Context. Mercury-manganese (HgMn) stars have been considered as non-magnetic and non-variable chemically peculiar (CP) stars for a long time. However, recent discoveries of the variability in spectral line profiles have suggested an inhomogeneous surface distribution of chemical elements in some HgMn stars. From the studies of other CP stars it is known that magnetic field plays a key role in the formation of surface spots. All attempts to find magnetic fields in HgMn stars have yielded negative results. Aims. In this study, we investigate the possible presence of a magnetic field in ϕ Phe (HD 11753) and reconstruct surface distribution of chemical elements that show variability in spectral lines.We also test a hypothesis that a magnetic field is concentrated in chemical spots and look into the possibility that some chemical elements are stratified with depth in the stellar atmosphere. Methods. Our analysis is based on high-quality spectropolarimetric time-series observations, covering a full rotational period of the star. Spectra were obtained with the HARPSpol at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field search, we employed the least-squares deconvolution (LSD) technique. Using Doppler imaging code INVERS10, we reconstructed surface chemical distributions by utilising information from multiple spectral lines. The vertical stratification of chemical elements was calculated with the DDAFit program. Results. Combining information from all suitable spectral lines, we set an upper limit of 4 G on the mean longitudinal magnetic field. For chemical spots, an upper limit on the longitudinal field varies between 8 and 15 G. We confirmed the variability of Y, Sr, and Ti and detected variability in Cr lines. Stratification analysis showed that Y and Ti are not concentrated in the uppermost atmospheric layers. Conclusions. Our spectropolarimetric observations rule out the presence of a strong, globally-organised magnetic field in ϕ Phe. This implies an alternative mechanism of spot formation, which could be related to a non-equilibrium atomic diffusion. However, the typical time scales of the variation in stratification predicted by the recent time-dependent diffusion models exceed significantly the spot evolution time-scale reported for ϕ Phe

    Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?

    Full text link
    Femtosecond pump-probe second-harmonic generation (SHG) and transient linear reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in air to analyze whether the electron temperature affects Fresnel factors or nonlinear susceptibilities, or both. Sensitivity to electron temperatures was attained by using photon energies near the interband transition threshold. We find that the nonlinear susceptibility carries the electron temperature dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel factors. This contrasting behavior emphasizes that SHG is not a priori sensitive to electron dynamics at surfaces or interfaces, notwithstanding its cause.Comment: 11 pages, 4 figure

    Transport spectroscopy in a time-modulated open quantum dot

    Full text link
    We have investigated the time-modulated coherent quantum transport phenomena in a ballistic open quantum dot. The conductance GG and the electron dwell time in the dots are calculated by a time-dependent mode-matching method. Under high-frequency modulation, the traversing electrons are found to exhibit three types of resonant scatterings. They are intersideband scatterings: into quasibound states in the dots, into true bound states in the dots, and into quasibound states just beneath the subband threshold in the leads. Dip structures or fano structures in GG are their signatures. Our results show structures due to 2ω\hbar\omega intersideband processes. At the above scattering resonances, we have estimated, according to our dwell time calculation, the number of round-trip scatterings that the traversing electrons undertake between the two dot openings.Comment: 8 pages, 5 figure

    Jahn-Teller polarons and their superconductivity in a molecular conductor

    Full text link
    We present a theoretical study of a possibility of superconductivity in a three dimensional molecular conductor in which the interaction between electrons in doubly degenerate molecular orbitals and an {\em intra}molecular vibration mode is large enough to lead to the formation of EβE\otimes \beta Jahn-Teller small polarons. We argue that the effective polaron-polaron interaction can be attractive for material parameters realizable in molecular conductors. This interaction is the source of superconductivity in our model. On analyzing superconducting instability in the weak and strong coupling regimes of this attractive interaction, we find that superconducting transition temperatures up to 100 K are achievable in molecular conductors within this mechanism. We also find, for two particles per molecular site, a novel Mott insulating state in which a polaron singlet occupies one of the doubly degenerate orbitals on each site. Relevance of this study in the search for new molecular superconductors is pointed out.Comment: Submitted to Phys. Rev.

    Quantum Chaos in Open versus Closed Quantum Dots: Signatures of Interacting Particles

    Full text link
    This paper reviews recent studies of mesoscopic fluctuations in transport through ballistic quantum dots, emphasizing differences between conduction through open dots and tunneling through nearly isolated dots. Both the open dots and the tunnel-contacted dots show random, repeatable conductance fluctuations with universal statistical proper-ties that are accurately characterized by a variety of theoretical models including random matrix theory, semiclassical methods and nonlinear sigma model calculations. We apply these results in open dots to extract the dephasing rate of electrons within the dot. In the tunneling regime, electron interaction dominates transport since the tunneling of a single electron onto a small dot may be sufficiently energetically costly (due to the small capacitance) that conduction is suppressed altogether. How interactions combine with quantum interference are best seen in this regime.Comment: 15 pages, 11 figures, PDF 2.1 format, to appear in "Chaos, Solitons & Fractals
    corecore