40 research outputs found
Robot-Assisted Kidney Transplantation
Robot-assisted kidney transplantation (RAKT) has recently been introduced to reduce the morbidity of open kidney transplantation (KT). Robot-assisted surgery has been able to overcome many of the limitations of classical laparoscopy, certainly in complex and technically demanding procedures, such as vascular and ureteral anastomosis. Since the first RAKT in 2010, this technique has been standardized and evaluated in highly experienced robot and KT centers around the world. In Europe, the European Association of Urology Robotic Urology Section (ERUS) created an RAKT working group in 2016 in order to prospectively follow the outcomes of RAKT. When performed by surgeons with both robotic and KT experience, RAKT has been proven to be safe and reproducible in selected cases and yield excellent graft function with a low complication rate. Multiple institutions have now adopted RAKT, and its use will likely increase in the near future. However, structured training and proctoring will be mandatory for those embarking on RAKT in order to help them negotiate the learning curve and avoid technical mistakes. This chapter will describe RAKT from living and deceased donors and its application in kidney autotransplantation (KAT)
M & L Jaargang 19/5
Anna Bergmans De Sint-Martinusbasiliek van Halle. Reiniging en onderzoek van het interieur. [The Saint Martins basilica in Halle Cleaning and study of the interior.]Karel Breda De restauratieve reiniging van het kerkinterieur (1998-1999). [The cleaning of the church interior.]Hugo VandenBorre De polychromie van het kerkinterieur: inventaris, reiniging en consolidatie. [A church interior and its polychromy: Inventory, cleaning and preservation.]Ingrid Geelen en Wivine Wailliez Enkele beschouwingen over de apostelen: de plaats van de kleur. [A dissertation on the Apostles: the role of colour.]Christian Bodiaux - De gebeeldhouwde zwikken in het koor. Enkele iconografische themas en stijlkenmerken. [The sculptured ensembles in the choir. Iconographical themes and style features.]Summar
Robot-assisted kidney transplantation with regional hypothermia using grafts with Multiple Vessels After Extracorporeal Vascular Reconstruction: results from the European Association of Urology Robotic Urology Section Working Group
Background: Kidney transplantation using grafts with multiple vessels (GMVs) is technically demanding and may be associated with increased risk of complications or suboptimal graft function. To date, no studies have reported on robot-assisted kidney transplantation (RAKT) using GMVs. Objective: To report our experience with RAKT using GMVs from living donors, focusing on technical feasibility and early postoperative outcomes. Design, setting, and participants: We reviewed the multi-institutional, prospectively collected European Association of Urology (EAU) Robotic Urology Section (ERUS)-RAKT database to select consecutive patients undergoing RAKT from living donors using GMVs between July 2015 and January 2018. Patients undergoing RAKT using grafts with single vessels (GSVs) served as controls. In case of GMVs, ex vivo vascular reconstruction techniques were performed during bench surgery according to the case-specific anatomy. Intervention: RAKT with regional hypothermia. Outcome measurements and statistical analysis: Intraoperative outcomes and early (30 d) postoperative complications and functional results were the main study endpoints. Multivariable logistic regression analysis evaluated potential predictors of suboptimal renal function at 1 mo. Results and limitations: Overall, 148 RAKTs were performed during the study period. Of these, 21/148 (14.2%) used GMVs; in all cases, single arterial and venous anastomoses could be performed after vascular reconstruction. Median anastomoses and rewarming times did not differ significantly between the GMV and GSV groups. Total and cold ischemia times were significantly higher in the GMV cohort (112 vs 88 min, p = 0.004 and 50 vs 34 min, p = 0.003, respectively). Overall complication rate and early functional outcomes were similar among the two groups. No major intra-or postoperative complications were recorded in the GMV cohort. At multivariable analysis, use of GMVs was not significantly associated with suboptimal renal function at 1 mo. Small sample size and short follow-up represent the main study limitations. Conclusions: RAKT using GMVs from living donors is technically feasible and achieved favorable perioperative and short-term functional outcomes. Larger studies with longer follow-up are needed to confirm our findings. Patient summary: In this study, we evaluated for the first time in literature the results of RAKT from living donors using kidneys with multiple arteries and veins. We found that, in experienced centers, RAKT using kidneys with multiple vessels is feasible and achieves optimal results in terms of postoperative kidney function with a low number of postoperative complications. (C) 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved
Pediatric challenges in robot-assisted kidney transplantation
Kidney transplantation is universally recognized as the gold standard treatment in patients with End-stage Kidney Disease (ESKD, or according to the latest nomenclature, CKD stage 5). Robot-assisted kidney transplantation (RAKT) is gradually becoming preferred technique in adults, even if applied in very few centra, with potentially improved clinical outcomes compared with open kidney transplantation. To date, only very few RAKT procedures in children have been described. Kidney transplant recipient patients, being immunocompromised, might be at increased risk for perioperative surgical complications, which creates additional challenges in management. Applying techniques of minimally invasive surgery may contribute to the improvement of clinical outcomes for the pediatric transplant patients population and help mitigate the morbidity of KT. However, many challenges remain ahead. Minimally invasive surgery has been consistently shown to produce improved clinical outcomes as compared to open surgery equivalents. Robot-assisted laparoscopic surgery (RALS) has been able to overcome many restrictions of classical laparoscopy, particularly in complex and demanding surgical procedures. Despite the presence of these improvements, many challenges lie ahead in the surgical and technical-material realms, in addition to anesthetic and economic considerations. RALS in children poses additional challenges to both the surgical and anesthesiology team, due to specific characteristics such as a small abdominal cavity and a reduced circulating blood volume. Cost-effectiveness, esthetic and functional wound outcomes, minimal age and weight to undergo RALS and effect of RAKT on graft function are discussed. Although data on RAKT in children is scarce, it is a safe and feasible procedure and results in excellent graft function. It should only be performed by a RAKT team experienced in both RALS and transplantation surgery, fully supported by a pediatric nephrology and anesthesiology team. Further research is necessary to better determine the value of the robotic approach as compared to the laparoscopic and open approach. Cost-effectiveness will remain an important subject of debate and is in need of further evaluation as well
Robot-assisted Kidney Transplantation: The European Experience.
BACKGROUND: Robot-assisted kidney transplantation (RAKT) has recently been introduced to reduce the morbidity of open kidney transplantation (KT). OBJECTIVE: To evaluate perioperative and early postoperative RAKT outcomes. DESIGN, SETTING AND PARTICIPANTS: This was a multicenter prospective observational study of 120 patients who underwent RAKT, predominantly with a living donor kidney, in eight European institutions between July 2015 and May 2017, with minimum follow-up of 1 mo. The robot-assisted surgical steps were transperitoneal dissection of the external iliac vessels, venous/arterial anastomosis, graft retroperitonealization, and ureterovesical anastomosis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Descriptive analysis of surgical data and their correlations with functional outcomes. RESULTS AND LIMITATIONS: The median operative and vascular suture time was 250 and 38min, respectively. The median estimated blood loss was 150ml. No major intraoperative complications occurred, although two patients needed open conversion. The median postoperative estimated glomerular filtration rate was 21.2, 45.0, 52.6, and 58.0ml/min on postoperative day 1, 3, 7, and 30, respectively. Both early and late graft function were not related to overall operating time or rewarming time. Five cases of delayed graft function (4.2%) were reported. One case (0.8%) of wound infection, three cases (2.5%) of ileus, and four cases of bleeding (3.3%; three of which required blood transfusion), managed conservatively, were observed. One case (0.8%) of deep venous thrombosis, one case (0.8%) of lymphocele, and three cases (2.5%) of transplantectomy due to massive arterial thrombosis were recorded. In five cases (4.2%), surgical exploration was performed for intraperitoneal hematoma. Limitations of the study include selection bias, the lack of an open control group, and failure to report on patient cosmetic satisfaction. CONCLUSIONS: When performed by surgeons with robotic and KT experience, RAKT is safe and reproducible in selected cases and yields excellent graft function. PATIENT SUMMARY: We present the largest reported series on robot-assisted kidney transplantation. Use of a robotic technique can yield low complication rates, rapid recovery, and excellent graft function. Further investigations need to confirm our promising data
Robot-assisted kidney transplantation (RAKT) from living donors using right- versus left-sided grafts: Results from the EAU Robotic Urology Section (ERUS)-RAKT working group
Introduction & Objectives: RAKT from living donors (LD) is increasingly performed in selected centers with experience in robotic surgery and kidney transplantation (KT). Of note, KT from LD using right-sided graft (RSG) is challenging due to the brevity of the right renal vein and has been associated with a higher risk of perioperative complications in selected series. In this scenario, RAKT may facilitate the performance of vascular anastomoses in case of short renal vessels thanks to the advantages of the robotic platform. However, the evidence on the safety and feasibility of RAKT using RSGs is lacking. The aim of this study is to compare the surgical and early perioperative outcomes after RAKT from LD using right- vs. left-sided grafts in a large prospective multicenter cohort (ERUS-RAKT working group)
Robotic kidney transplantation using right-versus left-sided grafts from living donors: an european multicentre experience (ERUS-RAKT working group)
Introduction: RAKT from living donors (LD) is increasingly performedin selected centers with experience in robotic surgery and kidneytransplantation (KT). Of note, KT from LD using right-sided graft (RSG)is challenging due to the brevity of the right renal vein and has beenassociated with a higher riskof perioperative complications in selectedseries. In this scenario, RAKT may facilitate the performance ofvascular anastomoses in case of short renal vessels thanks to theadvantages of the robotic platform. However, the evidence on thesafety and feasibility of RAKT using RSGs is lacking. The aim of thisstudy is to compare the surgical andearly perioperative outcomes after RAKT from LD using right- vs. left-sided grafts in a large prospectivemulticenter cohort (ERUS-RAKT working group)
REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
[EN] Glaucoma is one of the leading causes of irreversible but preventable blindness in working age populations. Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders. However, its application to glaucoma has been limited to the computation of a few related biomarkers such as the vertical cup-to-disc ratio. Deep learning approaches, although widely applied for medical image analysis, have not been extensively used for glaucoma assessment due to the limited size of the available data sets. Furthermore, the lack of a standardize benchmark strategy makes difficult to compare existing methods in a uniform way. In order to overcome these issues we set up the Retinal Fundus Glaucoma Challenge, REFUGE (https://refuge.grand-challenge.org), held in conjunction with MIC-CAI 2018. The challenge consisted of two primary tasks, namely optic disc/cup segmentation and glaucoma classification. As part of REFUGE, we have publicly released a data set of 1200 fundus images with ground truth segmentations and clinical glaucoma labels, currently the largest existing one. We have also built an evaluation framework to ease and ensure fairness in the comparison of different models, encouraging the development of novel techniques in the field. 12 teams qualified and participated in the online challenge. This paper summarizes their methods and analyzes their corresponding results. In particular, we observed that two of the top-ranked teams outperformed two human experts in the glaucoma classification task. Furthermore, the segmentation results were in general consistent with the ground truth annotations, with complementary outcomes that can be further exploited by ensembling the results.This work was supported by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and
Development, J.I.O is supported by WWTF (Medical University of
Vienna: AugUniWien/FA7464A0249, University of Vienna: VRG12-
009). Team Masker is supported by Natural Science Foundation of
Guangdong Province of China (Grant 2017A030310647). Team BUCT
is partially supported by the National Natural Science Foundation
of China (Grant 11571031). The authors would also like to thank
REFUGE study group for collaborating with this challenge.Orlando, JI.; Fu, H.; Breda, JB.; Van Keer, K.; Bathula, DR.; Diaz-Pinto, A.; Fang, R.... (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis. 59:1-21. https://doi.org/10.1016/j.media.2019.101570S12159Abramoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal Imaging and Image Analysis. IEEE Reviews in Biomedical Engineering, 3, 169-208. doi:10.1109/rbme.2010.2084567Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine, 1(1). doi:10.1038/s41746-018-0040-6Al-Bander, B., Williams, B., Al-Nuaimy, W., Al-Taee, M., Pratt, H., & Zheng, Y. (2018). Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis. Symmetry, 10(4), 87. doi:10.3390/sym10040087Almazroa, A., Burman, R., Raahemifar, K., & Lakshminarayanan, V. (2015). Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey. Journal of Ophthalmology, 2015, 1-28. doi:10.1155/2015/180972Burlina, P. M., Joshi, N., Pekala, M., Pacheco, K. D., Freund, D. E., & Bressler, N. M. (2017). Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 135(11), 1170. doi:10.1001/jamaophthalmol.2017.3782Carmona, E. J., Rincón, M., García-Feijoó, J., & Martínez-de-la-Casa, J. M. (2008). Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine, 43(3), 243-259. doi:10.1016/j.artmed.2008.04.005Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Christopher, M., Belghith, A., Bowd, C., Proudfoot, J. A., Goldbaum, M. H., Weinreb, R. N., … Zangwill, L. M. (2018). Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Scientific Reports, 8(1). doi:10.1038/s41598-018-35044-9De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., … Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350. doi:10.1038/s41591-018-0107-6Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., … Klein, J.-C. (2014). FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE. Image Analysis & Stereology, 33(3), 231. doi:10.5566/ias.1155DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics, 44(3), 837. doi:10.2307/2531595European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Part 1Supported by the EGS Foundation. (2017). British Journal of Ophthalmology, 101(4), 1-72. doi:10.1136/bjophthalmol-2016-egsguideline.001Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 27(3), 1-10. doi:10.1145/1360612.1360666Fu, H., Cheng, J., Xu, Y., Wong, D. W. K., Liu, J., & Cao, X. (2018). Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Transactions on Medical Imaging, 37(7), 1597-1605. doi:10.1109/tmi.2018.2791488Gómez-Valverde, J. J., Antón, A., Fatti, G., Liefers, B., Herranz, A., Santos, A., … Ledesma-Carbayo, M. J. (2019). Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomedical Optics Express, 10(2), 892. doi:10.1364/boe.10.000892Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., … Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402. doi:10.1001/jama.2016.17216Hagiwara, Y., Koh, J. E. W., Tan, J. H., Bhandary, S. V., Laude, A., Ciaccio, E. J., … Acharya, U. R. (2018). Computer-aided diagnosis of glaucoma using fundus images: A review. Computer Methods and Programs in Biomedicine, 165, 1-12. doi:10.1016/j.cmpb.2018.07.012Haleem, M. S., Han, L., van Hemert, J., & Li, B. (2013). Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Computerized Medical Imaging and Graphics, 37(7-8), 581-596. doi:10.1016/j.compmedimag.2013.09.005Holm, S., Russell, G., Nourrit, V., & McLoughlin, N. (2017). DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging, 4(1), 014503. doi:10.1117/1.jmi.4.1.014503Joshi, G. D., Sivaswamy, J., & Krishnadas, S. R. (2011). Optic Disk and Cup Segmentation From Monocular Color Retinal Images for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 30(6), 1192-1205. doi:10.1109/tmi.2011.2106509Kaggle, 2015. Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabetic-retinopathy-detection. [Online; accessed 10-January-2019].Kumar, J. R. H., Seelamantula, C. S., Kamath, Y. S., & Jampala, R. (2019). Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening. Scientific Reports, 9(1). doi:10.1038/s41598-019-43385-2Lavinsky, F., Wollstein, G., Tauber, J., & Schuman, J. S. (2017). The Future of Imaging in Detecting Glaucoma Progression. Ophthalmology, 124(12), S76-S82. doi:10.1016/j.ophtha.2017.10.011Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2018). Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology, 125(8), 1199-1206. doi:10.1016/j.ophtha.2018.01.023Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., … Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. doi:10.1016/j.media.2017.07.005Liu, S., Graham, S. L., Schulz, A., Kalloniatis, M., Zangerl, B., Cai, W., … You, Y. (2018). A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Ophthalmology Glaucoma, 1(1), 15-22. doi:10.1016/j.ogla.2018.04.002Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E., & Kennedy, L. (2004). Optic Nerve Head Segmentation. IEEE Transactions on Medical Imaging, 23(2), 256-264. doi:10.1109/tmi.2003.823261Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur, S., Stankovic, M., Scholz, P., … Kopp-Schneider, A. (2018). Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications, 9(1). doi:10.1038/s41467-018-07619-7Miri, M. S., Abramoff, M. D., Lee, K., Niemeijer, M., Wang, J.-K., Kwon, Y. H., & Garvin, M. K. (2015). Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. IEEE Transactions on Medical Imaging, 34(9), 1854-1866. doi:10.1109/tmi.2015.2412881Niemeijer, M., van Ginneken, B., Cree, M. J., Mizutani, A., Quellec, G., Sanchez, C. I., … Abramoff, M. D. (2010). Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging, 29(1), 185-195. doi:10.1109/tmi.2009.2033909Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., … Angelopoulou, E. (2013). Retinal vessel segmentation by improved matched filtering: evaluation on a new high‐resolution fundus image database. IET Image Processing, 7(4), 373-383. doi:10.1049/iet-ipr.2012.0455Orlando, J. I., Prokofyeva, E., & Blaschko, M. B. (2017). A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Transactions on Biomedical Engineering, 64(1), 16-27. doi:10.1109/tbme.2016.2535311Park, S. J., Shin, J. Y., Kim, S., Son, J., Jung, K.-H., & Park, K. H. (2018). A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training. Journal of Korean Medical Science, 33(43). doi:10.3346/jkms.2018.33.e239Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., … Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158-164. doi:10.1038/s41551-018-0195-0Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., & Meriaudeau, F. (2018). Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research. Data, 3(3), 25. doi:10.3390/data3030025Prokofyeva, E., & Zrenner, E. (2012). Epidemiology of Major Eye Diseases Leading to Blindness in Europe: A Literature Review. Ophthalmic Research, 47(4), 171-188. doi:10.1159/000329603Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., & Acharya, U. R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences, 441, 41-49. doi:10.1016/j.ins.2018.01.051Reis, A. S. C., Sharpe, G. P., Yang, H., Nicolela, M. T., Burgoyne, C. F., & Chauhan, B. C. (2012). Optic Disc Margin Anatomy in Patients with Glaucoma and Normal Controls with Spectral Domain Optical Coherence Tomography. Ophthalmology, 119(4), 738-747. doi:10.1016/j.ophtha.2011.09.054Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-ySchmidt-Erfurth, U., Sadeghipour, A., Gerendas, B. S., Waldstein, S. M., & Bogunović, H. (2018). Artificial intelligence in retina. Progress in Retinal and Eye Research, 67, 1-29. doi:10.1016/j.preteyeres.2018.07.004Sevastopolsky, A. (2017). Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis, 27(3), 618-624. doi:10.1134/s1054661817030269Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging, 15(1). doi:10.1186/s12880-015-0068-xThakur, N., & Juneja, M. (2018). Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42, 162-189. doi:10.1016/j.bspc.2018.01.014Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121(11), 2081-2090. doi:10.1016/j.ophtha.2014.05.013Johnson, S. S., Wang, J.-K., Islam, M. S., Thurtell, M. J., Kardon, R. H., & Garvin, M. K. (2018). Local Estimation of the Degree of Optic Disc Swelling from Color Fundus Photography. Lecture Notes in Computer Science, 277-284. doi:10.1007/978-3-030-00949-6_33Trucco, E., Ruggeri, A., Karnowski, T., Giancardo, L., Chaum, E., Hubschman, J. P., … Dhillon, B. (2013). Validating Retinal Fundus Image Analysis Algorithms: Issues and a Proposal. Investigative Opthalmology & Visual Science, 54(5), 3546. doi:10.1167/iovs.12-10347Vergara, I. A., Norambuena, T., Ferrada, E., Slater, A. W., & Melo, F. (2008). StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-265Wu, Z., Shen, C., & van den Hengel, A. (2019). Wider or Deeper: Revisiting the ResNet Model for Visual Recognition. Pattern Recognition, 90, 119-133. doi:10.1016/j.patcog.2019.01.006Zheng, Y., Hijazi, M. H. A., & Coenen, F. (2012). Automated «Disease/No Disease» Grading of Age-Related Macular Degeneration by an Image Mining Approach. Investigative Opthalmology & Visual Science, 53(13), 8310. doi:10.1167/iovs.12-957
M & L Jaargang 31/1
Tim Bellens, Anne Schryvers, Dries Tys, Delfien Termote en Hans Nakken - Archeologisch onderzoek van de Antwerpse burcht. [Archaeological research of the Antwerp fortress.]Het onderzoek naar het ontstaan en de evolutie van de Antwerpse burcht blijft tot op vandaag moeilijk te interpreteren en vele vragen kunnen enkel nog beantwoord worden door archeologisch onderzoek. Recent brachten opgravingen in de burchtzone een bodemarchief van onschatbare waarde aan het licht. Beetje bij beetje slagen Antwerpse archeologen er in om een bijna vergeten stadsicoon opnieuw tot leven te brengen.Dirk Pauwels, Frans Doperé en Bart Minnen - De Demer gedomineerd: de heer van Rivieren en zijn middeleeuwse woontoren in Gelrode. [Dominating the Demer river: the Lord of Rivieren and his mediaeval tower residence in Gelrode.]Zowel uit archiefbronnen als uit oude kaarten en tekeningen was het bestaan van een middeleeuwse woontoren in Gelrode bekend. Maar toen in 2007, bij tuinwerkzaamheden in een park, de fundamenten van een vierkant gebouw werden aangetroffen, konden ook archeologen voor het eerst de woning van de heer van Rivieren aan een grondig onderzoek onderwerpen.Caroline Ryssaert, Janiek De Gryse, Dries Tys, Cecile Baeteman, Joep Orbons, Delfien Termote en Pedro Pype - De \u27cirkel\u27 van Ver-Assebroek: prehistorisch heiligdom of middeleeuwse versterking? [The circle of Ver-Assebroek: prehistoric sanctuary or mediaeval fortification?]In het landschap van Ver-Assebroek bevinden zich enkele zeer mysterieuze cirkels, lang onderwerp van verhitte discussies. Wat voor sommigen een prehistorisch heiligdom was, is volgens anderen een middeleeuwse versterking. Nieuw interdisciplinair onderzoek, in opdracht van de Vlaamse overheid, lost een oud mysterie eindelijk op.Karel Breda, Lode De Clercq, Janiek De Gryse, Michel de Waha, Frans Doperé, Pedro Pype en Isolde Verhulst - Kasteel van Beersel. Een evaluatie na de eerste restauratiefase. [The Beersel castle. An assessment following the restorations first phase.]De huidige werken aan het kasteel van Beersel, sluitstuk van restauraties die al vanaf de jaren 28 van vorige eeuw begonnen, hebben een voorbeeldfunctie. De grondige restauratie werd immers intensief voorbereid en begeleid door archeologen, historici en bouwhistorici. Grondig en goed overwogen archeologisch onderzoek kon zo antwoorden bieden op vragen die anders wellicht voor altijd onbeantwoord zouden zijn gebleven.Summar