76 research outputs found

    Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer

    Get PDF
    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries

    Author Correction: Applying federated learning to combat food fraud in food supply chains:Applying federated learning to combat food fraud in food supply chains (npj Science of Food, (2023), 7, 1, (46), 10.1038/s41538-023-00220-3)

    Get PDF
    “In this article the affiliation details for Anand Gavai, Yamine Bouzembrak, Hans J. P. Marvin were incorrectly given as ‘Anand Gavai1, Yamine Bouzembrak2, Hans J. P. Marvin9 ‘, but should have been ‘Anand Gavai1,2, Yamine Bouzembrak2,3, Hans J. P. Marvin2,9’. The original article has been corrected.”</p

    Applying federated learning to combat food fraud in food supply chains

    Get PDF
    Ensuring safe and healthy food is a big challenge due to the complexity of food supply chains and their vulnerability to many internal and external factors, including food fraud. Recent research has shown that Artificial Intelligence (AI) based algorithms, in particularly data driven Bayesian Network (BN) models, are very suitable as a tool to predict future food fraud and hence allowing food producers to take proper actions to avoid that such problems occur. Such models become even more powerful when data can be used from all actors in the supply chain, but data sharing is hampered by different interests, data security and data privacy. Federated learning (FL) may circumvent these issues as demonstrated in various areas of the life sciences. In this research, we demonstrate the potential of the FL technology for food fraud using a data driven BN, integrating data from different data owners without the data leaving the database of the data owners. To this end, a framework was constructed consisting of three geographically different data stations hosting different datasets on food fraud. Using this framework, a BN algorithm was implemented that was trained on the data of different data stations while the data remained at its physical location abiding by privacy principles. We demonstrated the applicability of the federated BN in food fraud and anticipate that such framework may support stakeholders in the food supply chain for better decision-making regarding food fraud control while still preserving the privacy and confidentiality nature of these data

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs

    Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data

    Get PDF
    BACKGROUND: The European Platform on Rare Disease Registration (EU RD Platform) aims to address the fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-coordinating registries, by establishing standards for integration and interoperability. The first practical output of this effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries. Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics. Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles. RESULTS: Through a team-based iterative approach, we created semantically grounded models to represent each of the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data without requiring site-specific coding nor expertise in Linked Data or FAIR. CONCLUSIONS: Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches that were already familiar to them

    The implicitome: A resource for rationalizing gene-disease associations

    Get PDF
    High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome). Implicit relations are largely unknown to, or are even unintended by the original authors, but they vastly extend the reach of existing
    corecore