324 research outputs found
An inverse relationship between production and export efficiency in the Southern Ocean
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 1557–1561, doi:10.1002/grl.50219.In the past two decades, a number of studies have been carried out in the Southern Ocean to look at export production using drifting sediment traps and thorium-234 based measurements, which allows us to reexamine the validity of using the existing relationships between production, export efficiency, and temperature to derive satellite-based carbon export estimates in this region. Comparisons of in situ export rates with modeled rates indicate a two to fourfold overestimation of export production by existing models. Comprehensive analysis of in situ data indicates two major reasons for this difference: (i) in situ data indicate a trend of decreasing export efficiency with increasing production which is contrary to existing export models and (ii) the export efficiencies appear to be less sensitive to temperature in this region compared to the global estimates used in the existing models. The most important implication of these observations is that the simplest models of export, which predict increase in carbon flux with increasing surface productivity, may require additional parameters, different weighing of existing parameters, or separate algorithms for different oceanic regimes.This work was supported by NASA award
number NNX08AB48G.2013-10-2
SUSY a consequence of smoothness?
The consequences of certain simple assumptions like smoothness of ground
state properties and vanishing of the vacuum energy (at least perturbatively)
are explored. It would be interesting from the point of view of building
realistic theories to obtain these properties without supersymmetry. Here we
show, however, at least in some quantum mechanical models, that these simple
assumptions lead to supersymmetric theories.Comment: 26 pages; revised version of paper (November 15 2000
Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: Day to week resolution
A large bloom of Salpa spp. in the northeastern Pacific during the spring of 2012 resulted in a major deposition of tunics and fecal pellets on the seafloor at ∼ 4000 m depth (Sta. M) over a period of 6 months. Continuous monitoring of this food pulse was recorded using autonomous instruments: sequencing sediment traps, a time‐lapse camera on the seafloor, and a bottom‐transiting vehicle measuring sediment community oxygen consumption (SCOC). These deep‐sea measurements were complemented by sampling of salps in the epipelagic zone by California Cooperative Ocean Fisheries Investigations. The particulate organic carbon (POC) flux increased sharply beginning in early March, reaching a peak of 38 mg C m−2 d−1 in mid‐April at 3400 m depth. Salp detritus started appearing in images of the seafloor taken in March and covered a daily maximum of 98% of the seafloor from late June to early July. Concurrently, the SCOC rose with increased salp deposition, reaching a high of 31 mg C m−2 d−1 in late June. A dominant megafauna species, Peniagone sp. A, increased 7‐fold in density beginning 7 weeks after the peak in salp deposition. Estimated food supply from salp detritus was 97–327% of the SCOC demand integrated over the 6‐month period starting in March 2012. Such large episodic pulses of food sustain abyssal communities over extended periods of time
Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific
Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (≥mean + 2 σ), and 43% from 2011 to 2017. From 2011 to 2017, when high-resolution SCOC data were available, time lags between changes in satellite-estimated export flux (EF), POC flux, and SCOC on the sea floor varied between six flux events from 0 to 70 days, suggesting variable remineralization rates and/or particle sinking speeds. Half of POC flux pulse events correlated with prior increases in EF and/or subsequent SCOC increases. Peaks in EF overlying Station M frequently translated to changes in POC flux at abyssal depths. A power-law model (Martin curve) was used to estimate abyssal fluxes from EF and midwater temperature variation. While the background POC flux at 3,400-m depth was described well by the model, the episodic events were significantly underestimated by ∼80% and total flux by almost 50%. Quantifying episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of POC sequestration and understanding the global carbon cycle
Recommended from our members
Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea
Extensive dissolution of live pteropods in the Southern Ocean
The carbonate chemistry of the surface ocean is rapidly
changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94–
1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand
Autonomous Ocean Measurements in the California Current Ecosystem
Event-scale phenomena, of limited temporal duration or restricted spatial extent, often play a disproportionately large role in ecological processes occurring in the ocean water column. Nutrient and gas fluxes, upwelling and downwelling, transport of biogeochemically important elements, predator-prey interactions, and other processes may be markedly influenced by such events, which are inadequately resolved from infrequent ship surveys. The advent of autonomous instrumentation, including underwater gliders, profiling floats, surface drifters, enhanced moorings, coastal high-frequency radars, and satellite remote sensing, now provides the capability to resolve such phenomena and assess their role in structuring pelagic ecosystems. These methods are especially valuable when integrated together, and with shipboard calibration measurements and experimental programs
Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: Day to week resolution
Abstract A large bloom of Salpa spp. in the northeastern Pacific during the spring of 2012 resulted in a major deposition of tunics and fecal pellets on the seafloor at , 4000 m depth (Sta. M) over a period of 6 months. Continuous monitoring of this food pulse was recorded using autonomous instruments: sequencing sediment traps, a timelapse camera on the seafloor, and a bottom-transiting vehicle measuring sediment community oxygen consumption (SCOC). These deep-sea measurements were complemented by sampling of salps in the epipelagic zone by California Cooperative Ocean Fisheries Investigations. The particulate organic carbon (POC) flux increased sharply beginning in early March, reaching a peak of 38 mg C m 22 d 21 in mid-April at 3400 m depth. Salp detritus started appearing in images of the seafloor taken in March and covered a daily maximum of 98% of the seafloor from late June to early July. Concurrently, the SCOC rose with increased salp deposition, reaching a high of 31 mg C m 22 d 21 in late June. A dominant megafauna species, Peniagone sp. A, increased 7-fold in density beginning 7 weeks after the peak in salp deposition. Estimated food supply from salp detritus was 97-327% of the SCOC demand integrated over the 6-month period starting in March 2012. Such large episodic pulses of food sustain abyssal communities over extended periods of time
Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics
Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity
Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy
AbstractObservations made in the Scotia Sea during the May 2015 Surface Mixed Layer Evolution at Submesoscales (SMILES) research cruise captured submesoscale, O(1-10 km), variability along the periphery of a mesoscale O(10-100 km) meander precisely as it separated from the Antarctic Circumpolar Current (ACC) and formed a cyclonic eddy ~ 120 km in diameter. The meander developed in the Scotia Sea, an eddy-rich region east of the Drake Passage where the Subantarctic and Polar fronts converge and modifications of Subantarctic mode water (SAMW) occur. In situ measurements reveal a rich submesoscale structure of temperature and salinity and a loss of frontal integrity along the newly-formed southern sector of the eddy. A mathematical framework is developed to estimate vertical velocity from co-located drifter and horizontal water velocity time series, under certain simplifying assumptions appropriate for the current data set. Upwelling (downwelling) rates of O(100 m day-1) are found in the northern (southern) eddy sector. Favorable conditions for submesoscale instabilities are found in the mixed layer, particularly at the beginning of the survey in the vicinity of density fronts. Shallower mixed layer depths and increased stratification are observed later in the survey on the inner edge of the front. Evolution in T-S space indicates modification of water mass properties in the upper 200 m over 2 days. Modifications along �θ 27 - 27.2 kg m�3 have climate-related implications for mode and intermediate water transformation in the Scotia Sea on finer spatiotemporal scales than observed previously
- …