431 research outputs found
Food/Non-food Image Classification and Food Categorization using Pre-Trained GoogLeNet Model
Recent past has seen a lot of developments in the field of image-based dietary assessment. Food image classification and recognition are crucial steps for dietary assessment. In the last couple of years, advancements in the deep learning and convolutional neural networks proved to be a boon for the image classification and recognition tasks, specifically for food recognition because of the wide variety of food items. In this paper, we report experiments on food/non-food classification and food recognition using a GoogLeNet model based on deep convolutional neural network. The experiments were conducted on two image datasets created by our own, where the images were collected from existing image datasets, social media, and imaging devices such as smart phone and wearable cameras. Experimental results show a high accuracy of 99.2% on the food/non-food classification and 83.6% on the food category recognition
The Optical System for the Large Size Telescope of the Cherenkov Telescope Array
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is
designed to achieve a threshold energy of 20 GeV. The LST optics is composed of
one parabolic primary mirror 23 m in diameter and 28 m focal length. The
reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The
total effective reflective area, taking into account the shadow of the
mechanical structure, is about 368 m. The mirrors have a sandwich structure
consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm
thickness, and another glass sheet on the rear, and have a total weight about
47 kg. The mirror surface is produced using a sputtering deposition technique
to apply a 5-layer coating, and the mirrors reach a reflectivity of 94%
at peak. The mirror facets are actively aligned during operations by an active
mirror control system, using actuators, CMOS cameras and a reference laser.
Each mirror facet carries a CMOS camera, which measures the position of the
light spot of the optical axis reference laser on the target of the telescope
camera. The two actuators and the universal joint of each mirror facet are
respectively fixed to three neighboring joints of the dish space frame, via
specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Virtual Reality Simulator for Medical Auscultation Training
© Springer Nature Switzerland AG 2019. According to the Oxford English dictionary, auscultation is “the action of listening to sounds from the heart, lungs, or other organs, typically with a stethoscope, as a part of medical diagnosis.” In this work, we describe a medical simulator that includes audio, visual, pseudo-haptic, and spatial elements for training medical students in auscultation. In our training simulator, the user is fully immersed in a virtual reality (VR) environment. A typical hospital bedside scenario was recreated, and the users can see their own body and the patient increase immersion. External tracking devices are used to acquire the user’s movements and map them into the VR environment. The main idea behind this work is for the user to associate the heart and lung sounds, as heard through the stethoscope with the corresponding health-related problems. Several sound parameters including the volume, give information about the type and severity of the disease. Our simulator can reproduce sounds belonging to the heart and lungs. Through the proposed VR-based training, the medical student ideally will learn to relate sounds to illnesses in a realistic setting, accelerating the learning process
TEMPRANILLO is a regulator of juvenility in plants
Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species
Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial
Background
Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0°) compared with sitting-up (≥30°) head positioning in the first 24 hours of hospital admission for patients with acute stroke.
Methods/Design
We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0°) or sitting-up (≥30°) head position as a ‘business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (α 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period.
Discussion
HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke.
Trial registration
ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Food category recognition using SURF and MSER local feature representation
Food object recognition has gained popularity in recent years. This can perhaps be attributed to its potential applications in fields such as nutrition and fitness. Recognizing food images however is a challenging task since various foods come in many shapes and sizes. Besides having unexpected deformities and texture, food images are also captured in differing lighting conditions and camera viewpoints. From a computer vision perspective, using global image features to train a supervised classifier might be unsuitable due to the complex nature of the food images. Local features on the other hand seem the better alternative since they are able to capture minute intricacies such as interest points and other intricate information. In this paper, two local features namely SURF (Speeded- Up Robust Feature) and MSER (Maximally Stable Extremal Regions) are investigated for food object recognition. Both features are computationally inexpensive and have shown to be effective local descriptors for complex images. Specifically, each feature is firstly evaluated separately. This is followed by feature fusion to observe whether a combined representation could better represent food images. Experimental evaluations using a Support Vector Machine classifier shows that feature fusion generates better recognition accuracy at 86.6%
Mirror development for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.Fil: Forster, A.. Max-Planck-Institut fur Kernphysik; AlemaniaFil: Armstrong, T.. Durham University; Reino UnidoFil: Baba, H.. Ibaraki University; JapónFil: Bähr, J.. No especifíca;Fil: Bonardi, A.. Universitat Tübingen; AlemaniaFil: Bonnoli, G.. Osservatorio Astronomico di Brera; ItaliaFil: Brun, P.. No especifíca;Fil: Canestrari, R.. Osservatorio Astronomico di Brera; ItaliaFil: Chadwick, P.. Durham University; Reino UnidoFil: Chikawa, M.. University of Tokyo; JapónFil: Carton, P.-H.. Centre de Saclay; FranciaFil: De Souza, V.. Universidade de Sao Paulo; BrasilFil: Dipold, J.. Universidade de Sao Paulo; BrasilFil: Doro, M.. Università di Padova; ItaliaFil: Durand, D.. No especifíca;Fil: Dyrda, M.. Polish Academy of Sciences; ArgentinaFil: Giro, E.. Osservatorio Astronomico di Padova; ItaliaFil: Glicenstein, J.-F.. No especifíca;Fil: Hanabata, Y.. Kinki University; JapónFil: Hayashida, M.. University of Tokyo; JapónFil: Hrabovski, M.. No especifíca;Fil: Jeanney, C.. Centre de Saclay; FranciaFil: Kagaya, M.. Ibaraki University; JapónFil: Katagiri, H.. Ibaraki University; JapónFil: Lessio, L.. Osservatorio Astronomico di Padova; ItaliaFil: Mandat, D.. Institute of Physics of the Academy of Sciences of the Czech Republic; República ChecaFil: Mariotti, M.. Università di Padova; ItaliaFil: Medina, Maria Clementina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Yoshida, T.. Ibaraki University; Japón33rd International Cosmic Ray ConferenceRío de JaneiroBrasilBrazilian Physical Societ
- …