78 research outputs found

    Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse

    Get PDF
    Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm

    Science Priorities for Seamounts: Research Links to Conservation and Management

    Get PDF
    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment

    Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach

    Full text link

    Historical Archaeologies of the American West

    Full text link

    Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951-2000

    No full text
    During the last half of the 20th century, cumulative annual discharge from 137 representative rivers (watershed areas ranging from 0.3 to 6300 × 103 km2) to the global ocean remained constant, although annual discharge from about one-third of these rivers changed by more than 30%. Discharge trends for many rivers reflected mostly changes in precipitation, primarily in response to short- and longer-term atmospheric-oceanic signals; with the notable exception of the Parana, Mississippi, Niger and Cunene rivers, few of these "normal" rivers experienced significant changes in either discharge or precipitation. Cumulative discharge from many mid-latitude rivers, in contrast, decreased by 60%, reflecting in large part impacts due to damming, irrigation and interbasin water transfers. A number of high-latitude and high-altitude rivers experienced increased discharge despite generally declining precipitation. Poorly constrained meteorological and hydrological data do not seem to explain fully these "excess" rivers; changed seasonality in discharge, decreased storage and/or decreased evapotranspiration also may play important roles
    corecore