5,089 research outputs found
Mucosal immune responses following intestinal nematode infection.
In most natural environments, the large majority of mammals harbour parasitic helminths that often live as adults within the intestine for prolonged periods (1-2 years). Although these organisms have been eradicated to a large extent within westernized human populations, those living within rural areas of developing countries continue to suffer from high infection rates. Indeed, recent estimates indicate that approximately 2.5 billion people worldwide, mainly children, currently suffer from infection with intestinal helminths (also known as geohelminths and soil-transmitted helminths) . Paradoxically, the eradication of helminths is thought to contribute to the increased incidence of autoimmune diseases and allergy observed in developed countries. In this review, we will summarize our current understanding of host-helminth interactions at the mucosal surface that result in parasite expulsion or permit the establishment of chronic infections with luminal dwelling adult worms. We will also provide insight into the adaptive immune mechanisms that provide immune protection against re-infection with helminth larvae, a process that is likely to be key to the future development of successful vaccination strategies. Lastly, the contribution of helminths to immune modulation and particularly to the treatment of allergy and inflammatory bowel disease will be discussed
Metabolic flexibility as a major predictor of spatial distribution in microbial communities
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology
Studying the effects of thalamic interneurons in a thalamocortical neural mass model
Neural mass models of the thalamocortical circuitry are
often used to mimic brain activity during sleep and
wakefulness as observed in scalp electroencephalogram
(EEG) signals [1]. It is understood that alpha rhythms
(8-13 Hz) dominate the EEG power-spectra in the resting-state
[2] as well as the period immediately before
sleep [3]. Literature review shows that the thalamic
interneurons (IN) are often ignored in thalamocortical
population models; the emphasis is on the connections
between the thalamo cortical relay (TCR) and the thalamic
reticular nucleus (TRN). In this work, we look into
the effects of the IN cell population on the behaviour of
an existing thalamocortical model containing the TCR
and TRN cell populations [4]. A schematic of the
extended model used in this work is shown in Fig.1.
The model equations are solved in Matlab using the
Runge-Kutta method of the 4th/5th order. The model
shows high sensitivity to the forward and reverse rates
of reactions during synaptic transmission as well as on
the membrane conductance of the cell populations. The
input to the model is a white noise signal simulating
conditions of resting state with eyes closed, a condition
well known to be associated with dominant alpha band
oscillations in EEG e.g. [5]. Thus, the model parameters
are calibrated to obtain a set of basal parameter values
when the model oscillates with a dominant frequency
within the alpha band. The time series plots and the
power spectra of the model output are compared with
those when the IN cell population is disconnected from
the circuit (by setting the inhibitory connectivity parameter
from the IN to the TCR to zero). We observe
(Fig. 2 inset) a significant difference in time series output
of the TRN cell population with and without the IN
cell population in the model; this in spite of the IN
having no direct connectivity to and from the TRN cell
population (Fig. 1). A comparison of the power spectra
behaviour of the model output within the delta
(1-3.5Hz), theta (3.75-7.5Hz), alpha (7.75-13.5Hz) and
beta (13.75-30.5Hz) bands is shown in Fig. 2. Disconnecting
the IN cell population shows a significant drop in the
alpha band power and the dominant frequency of oscillation
now lies within the theta band. An overall ‘slowing’
(left-side shift) of the power spectra is observed with an
increase within the delta and theta bands and a decrease
in the alpha and beta bands. Such a slowing of EEG is a
signature of slow wave sleep in healthy individuals, and
this suggests that the IN cell population may be centrally
involved in the phase transition to slow wave sleep [6]. It
is also characteristic of the waking EEG in Alzheimer’s
disease, and may help us to understand the role of the IN
cell population in modulating TCR and TRN cell behaviour
in pathological brain conditions
Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research.
First observation: Pied Avocet at Robben Island
The Pied Avocet Recurvirostra avosetta is a common breeding resident in southern Africa, typically found at coastal saltworks, sewage pans and coastal lagoons (Tree 1997). In South Africa, one of the critical sites for the species in the Western Cape is the Rietvlei Wetland Reserve (33?50'S, 18?29'E) on the mainland adjacent and about 10 km from Robben Island
Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria
A systematic review of strategies to recruit and retain primary care doctors
Background There is a workforce crisis in primary care. Previous research has looked at the reasons underlying recruitment and retention problems, but little research has looked at what works to improve recruitment and retention. The aim of this systematic review is to evaluate interventions and strategies used to recruit and retain primary care doctors internationally. Methods A systematic review was undertaken. MEDLINE, EMBASE, CENTRAL and grey literature were searched from inception to January 2015.Articles assessing interventions aimed at recruiting or retaining doctors in high income countries, applicable to primary care doctors were included. No restrictions on language or year of publication. The first author screened all titles and abstracts and a second author screened 20%. Data extraction was carried out by one author and checked by a second. Meta-analysis was not possible due to heterogeneity. Results 51 studies assessing 42 interventions were retrieved. Interventions were categorised into thirteen groups: financial incentives (n=11), recruiting rural students (n=6), international recruitment (n=4), rural or primary care focused undergraduate placements (n=3), rural or underserved postgraduate training (n=3), well-being or peer support initiatives (n=3), marketing (n=2), mixed interventions (n=5), support for professional development or research (n=5), retainer schemes (n=4), re-entry schemes (n=1), specialised recruiters or case managers (n=2) and delayed partnerships (n=2). Studies were of low methodological quality with no RCTs and only 15 studies with a comparison group. Weak evidence supported the use of postgraduate placements in underserved areas, undergraduate rural placements and recruiting students to medical school from rural areas. There was mixed evidence about financial incentives. A marketing campaign was associated with lower recruitment. Conclusions This is the first systematic review of interventions to improve recruitment and retention of primary care doctors. Although the evidence base for recruiting and care doctors is weak and more high quality research is needed, this review found evidence to support undergraduate and postgraduate placements in underserved areas, and selective recruitment of medical students. Other initiatives covered may have potential to improve recruitment and retention of primary care practitioners, but their effectiveness has not been established
Vitellogenin Underwent Subfunctionalization to Acquire Caste and Behavioral Specific Expression in the Harvester Ant Pogonomyrmex barbatus
PMCID: PMC3744404This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
Drivers of risk perceptions about the invasive non-native plant Japanese knotweed in domestic gardens
This is the final version of the article. Available from Springer Verlag via the DOI in this record.How people perceive risks posed by invasive non-native plants (INNP) can influence attitudes and consequently likely influence behavioural decisions. Although some drivers of risk perception for INNP have been identified, research has not determined those for INNP in domestic gardens. This is concerning as domestic gardens are where people most commonly encounter INNP, and where impacts can be particularly acute. Using a survey approach, this study determined the drivers of perceptions of risk of INNP in domestic gardens and which risks most concern people. Japanese knotweed Fallopia japonica, in Cornwall, UK, where it is a problematic INNP in domestic gardens, was used as a case study. Possible drivers of risk were chosen a priori based on variables previously found to be important for environmental risks. Participants perceived Japanese knotweed to be less frequent on domestic property in Cornwall if their occupation involved the housing market, if they had not had Japanese knotweed in their own garden, if they did not know of Japanese knotweed within 5 km of their home, or if they were educated to degree level. Participants who thought that the consequences of Japanese knotweed being present on domestic property could be more severe had occupations that involved the housing market, knew of Japanese knotweed within 5 km of their home, or were older. Although concern about the damage Japanese knotweed could do to the structure of a property was reported as the second highest motivation to control it by the majority of participants, the perception of threat from this risk was rated as relatively low. The results of this study have implications for policy, risk communication, and garden management decisions. For example, there is a need for policy that provides support and resources for people to manage INNP in their local area. To reduce the impact and spread of INNP we highlight the need for clear and accurate risk communication within discourse about this issue. The drivers identified in this study could be used to target awareness campaigns to limit the development of over- or under-inflated risk perceptions.This project was funded as part of the Wildlife Research Co-Operative between the University of Exeter and the Animal and Plant Health Agency
- …
