33 research outputs found

    Nitric Oxide Fluxes from Upland Soils in Central Hokkaido, Japan

    Get PDF
    Symposium Pape

    Modelling N2O emissions from Andosols in an intensive dairy farming region, Japan

    Get PDF
    Session 2: Nitrogen, Green House Gasses and Agricultur

    Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe

    Get PDF
    Soybean is one of the five crops that dominate global agriculture, along with maize, wheat, cotton and rice. In Europe, soybean still plays a minor role and is cultivated mainly in the South and East. Very little is known about the potential for soybean in higher latitudes with relatively cool conditions. To investigate the agronomic potential and limitations of soybean for feed (high grain yield) and food (high protein content, e.g., for tofu production) in higher latitudes, an organic soybean cropping system experiment was carried out from 2015 to 2017 in northeastern Germany. The objectives were: (1) to identify food- and feed-grade soybean cultivars that are adapted to a central European climate in terms of protein, grain yield, and yield stability, (2) to explore the effect of irrigation on soybean protein and grain yield under relatively dry growing conditions, and (3) to determine the agro-economic potential of soybean cultivation for both feed and food markets. Three soybean cultivars were tested with and without irrigation. The soybean feed-grade cultivars 'Sultana' and 'Merlin' were better adapted to the growing cycle and temperature, providing higher and more stable yields (average 2700 kg ha(-1)) than the food-grade cultivar 'Protibus' (average 1300 kg ha(-1)). Irrigation increased soybean grain yields by 41% on average. In the year with sufficient precipitation, no additional irrigation was necessary. Gross margins of organic soybean ranged between 750 (sic) ha(-1) for the rainfed food-grade soybean and 2000 (sic) ha(-1) for the irrigated feed-grade soybean and were higher than other crops. We demonstrated a large agro-economic potential for soybean as a novel grain legume crop to diversify cropping systems and increase the production of protein crops in central Europe.Peer reviewe

    Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems

    Get PDF
    To support the adaption of soybean [Glycine max (L) Merrill] cultivation across Central Europe, the availability of compatible soybean nodulating Bradyrhizobia (SNB) is essential. Little is known about the symbiotic potential of indigenous SNB in Central Europe and the interaction with an SNB inoculum from commercial products. The objective of this study was to quantify the capacity of indigenous and inoculated SNB strains on the symbiotic performance of soybean in a pot experiment, using soils with and without soybean history. Under controlled conditions in a growth chamber, the study focused on two main factors: a soybean cropping interval (time since the last soybean cultivation; SCI) and inoculation with commercial Bradyrhizobia strains. Comparing the two types of soil, without soybean history and with 1-4 years SCI, we found out that plants grown in soil with soybean history and without inoculation had significantly more root nodules and higher nitrogen content in the plant tissue. These parameters, along with the leghemoglobin content, were found to be a variable among soils with 1-4 years SCI and did not show a trend over the years. Inoculation in soil without soybean history showed a significant increase in a nodulation rate, leghemoglobin content, and soybean tissue nitrogen concentration. The study found that response to inoculation varied significantly as per locations in soil with previous soybean cultivation history. An inoculated soybean grown on loamy sandy soils from the location Muncheberg had significantly more nodules as well as higher green tissue nitrogen concentration compared with non-inoculated plants. No significant improvement in a nodulation rate and tissue nitrogen concentration was observed for an inoculated soybean grown on loamy sandy soils from the location Fehrow. These results suggest that introduced SNB strains remained viable in the soil and were still symbiotically competent for up to 4 years after soybean cultivation. However, the symbiotic performance of the SNB remaining in the soils was not sufficient in all cases and makes inoculation with commercial products necessary. The SNB strains found in the soil of Central Europe could also be promising candidates for the development of inoculants and already represent a contribution to the successful cultivation of soybeans in Central Europe

    Eco-balance analysis of land use combinations to minimize environmental impacts and maximize farm income in northern Japan

    Get PDF
    Relationships between global warming potential (GWP), farmland surplus nitrogen (FSN) and income for major land uses in Ikushunbetsu watershed were compared using the eco-balance method. An empirical model was created for carbon dioxide, methane and nitrous oxide for both uplands and paddy rice using monitoring data from 22 fields. The greenhouse gas emissions were converted into GWP, whereas yield and FSN were obtained from farmers' interviews and literature survey. Land use distribution was obtained by ground surveys in 2002, 2005 and 2007. The analysis showed that paddy rice and soybean were characterized by a high GWP, low FSN and high income, whereas onions and vegetables had a high FSN but low GWP and moderate income. Wheat showed a negative GWP in some years and abandoned areas always exhibit negative values. The total GWP for the region was 14184, 11085 and 8337 Mg CO2 yr^[-1] for 2002, 2005 and 2007, respectively. The contribution of paddy rice to GWP was highest, ranging from 40% to 75%. To find optimal land use combinations that have higher income and lower GWP and FSN than present, all possible land use combination was analyzed by changing the land use proportion from 0 - 100% at an interval of 10%. The number of land use combinations meeting the requirements in the three investigated years was 205. Abandoned area which had the smallest environmental load was included in every land use combination, indicating that land uses with low environmental impacts should be maintained at a certain proportion to mitigate the environmental load accompanying land uses with high production

    Fostering the Implementation of Nature Conservation Measures in Agricultural Landscapes: The NatApp

    No full text
    Large-scale, high-input, and intensified agriculture poses threats to sustainable agroecosystems and their inherent biodiversity. The EU Common Agricultural Policy (CAP) covers a great number of nature conservation programs (Agri-Environment and Climate Measures, AECM) aiming to encourage sustainable agriculture. Currently, farmers are not encouraged to broadly implement these measures due to the lack of structured information, overly complicated and unclear application procedures, and a high risk of sanctions. In addition, the current structures are associated with time-consuming monitoring and control procedures for the paying agencies. Digital technologies can offer valuable assistance to circumvent relevant barriers and limitations and support a broader uptake of AECM. NatApp is a digital tool that supports and guides farmers through the complete process of choosing, applying, implementing, and documenting AECM on their fields in accordance with legal requirements in Germany. We introduce the concept of NatApp and analyze how it can simplify and encourage the uptake and implementation of AECM. This study identifies its unique features for the provision of information and documentation opportunities compared with other digital farming tools focused on sustainable agriculture and outline how it can support farmers to actively contribute to more sustainable agriculture

    Effects of environmental factors on temporal variation in annual carbon dioxide and nitrous oxide emissions from an unfertilized bare field on Gray Lowland soil in Mikasa, Hokkaido, Japan

    Get PDF
    Soil is one of the important sources of atmospheric carbon dioxide (CO2) and nitrous oxide (N2O). Studies of CO2 and N2O emission from bare soil may explain the annual change of carbon (C) in soil organic matter (SOM) and help analyzing the N2O production from SOM. Therefore, CO2 and N2O emissions associated with the decomposition of SOM from bare soil are important factors for assessing the C budget and N2O emission in agricultural field. We conducted a study over seven years to assess the controlling factors of CO2 and N2O emissions from unplanted and unfertilized soil in Mikasa, Hokkaido, Japan. Carbon dioxide flux increased in the summer, and there were significant positive correlations between the CO2 flux and soil temperature in the first four years. However, apparent relationships between CO2 flux and WFPS, soil NH4 and NO3 concentrations were not observed. The slope of monthly CO2 emission against mean monthly temperature was positively correlated with monthly precipitation. These results suggest that the response of CO2 production to increase in soil temperature becomes more sensitive in wet soils. The average CO2 emission during the study period was 2.53 Mg C ha^[-1] year^[-1], and uncertainty of the annual CO2 emission was 24%. Annual precipitation explained the yearly variation (CO2 emission [Mg C ha^[-1] year^[-1]] = 0.0021 x annual precipitation [mm year^[-1]] -0.0499, R = 0.976, P < 0.001). Nitrous oxide flux increased from July to October, and was positively correlated with CO2 flux. Based on the ratio of N2O-N : NO-N of fluxes, N2O appeared to be the main product of denitrification. The average N2O emission in the study period was 4.88 kg N ha^[-1] year^[-1], and uncertainty of annual N2O emission was 58.5%. Strong relationships between the monthly emissions of CO2 and N2O suggest that N2O production by denitrification is strongly affected by SOM decomposition. Unlike the CO2 emission, the relationship between N2O emission and precipitation was not observed because of the multiple pathways of nitrification and denitrification for N2O production induced by SOM decomposition
    corecore