

Title	Effects of environmental factors on temporal variation in annual carbon dioxide and nitrous oxide emissions from an unfertilized bare field on Gray Lowland soil in Mikasa, Hokkaido, Japan
Author(s)	Toma, Yo; Kimura, Sonoko D.; Yamada, Hiroyuki; Hirose, Yuu; Fujiwara, Kazuya; Kusa, Kanako; Hatano, Ryusuke
Citation	Soil Science & Plant Nutrition, 56(4), 663-675 https://doi.org/10.1111/j.1747-0765.2010.00486.x
Issue Date	2010-08
Doc URL	http://hdl.handle.net/2115/46869
Rights	The definitive version is available at www.blackwellsynergy.com
Туре	article (author version)
File Information	SSPN56-4_663-675.pdf

1		1 / 46
2		
3		
4		
5		
6	1	Division: Environment
/ Q		
9	2	Contribution: Full-length paper
10	2	
11		
12	3	litie: Effects of environmental factors on temporal variation in annual carbon
13		
14	4	dioxide and nitrous oxide emissions from an unfertilized bare field on Gray
15		
17	5	Lowland soil in Mikasa, Hokkaido, Japan
18		
19	6	
20	0	
21	_	Development (Mariatian in OO) and N O antipairs (see how as "
22 23	7	Running head: Variation in CO_2 and N_2O emission from bare soil
24		
25	8	
26		
27	9	List of authors:
28		
29 30	10	Yo Toma ¹ , Sonoko D. Kimura ² , Hirovuki Yamada ³ , Yuu Hirose ⁴ , Kazuva
31		······································
32	4.4	Euliwara ⁵ Kanaka Kusa ⁶ Buusuka Hatana ⁷
33	11	
34		
36	12	Institute or laboratory of origin:
37		
38	13	¹ Field Science Center for Northern Biosphere, Hokkaido University, Kita 11 Nishi
39		
40	14	10, Kita-ku, Sapporo 060-8589, Japan
41 12		
43	15	² Graduate School of Agriculture Department of International Environmental &
44	10	
45	40	Agricultural Science, Takya University of Agriculture and Technology, Sciwaighe
46	10	Agricultural Science, Tokyo University of Agriculture and Technology, Salwalcho
47		
40 ⊿0	17	3-5-8, Fuchu, 183-8509 Tokyo 183-8509, Japan
5 0		
51	18	³ Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku,
52		
53		
54 55		
56 56		
57		
58		
59		
60		

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
3/	
25	
20	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
5Z	
53	
54	
55	
56	
57	
58	
59	
60	

19	Sapporo 060-8589, Japan
13	Oapporo 000 0000, Japan

- ⁴ Department of Biological Science, Graduate School of Sciences, the University
- of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- ⁵ Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo

23 060-8589, Japan

- ⁶ National Agricultural Research Center, Tsukuba 305-8666, Japan
- ⁷ Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku,

26 Sapporo 060-8589, Japan

27

28 *Corresponding author: Yo Toma (Tel: +82-011-706-2854, E-mail:

29 toma@fsc.hokudai.ac.jp)

30

1		5748
2		
3		
4		
5		
6	32	Abstract
7	52	
8		
9	33	Soil is one of the important sources of atmospheric carbon dioxide (CO ₂) and
10		
11	0.4	nitrove evide (N.O). Study of CO, and N.O emission from here exil may evaluin
12	34	There exists a study of OO_2 and N_2O emission from bare solitinal explain
13		
14	35	the annual change of carbon (C) in soil organic matter (SOM) and help analyzing
15		5 () 5 () 1 5 5
16		
17	36	the N_2O production from SOM. Therefore, CO_2 and N_2O emissions associated
18		
19	37	with the decomposition of SOM from bare soil are important factors for
20	01	
21		
22	38	assessing the C budget and N_2O emission in agricultural field. We conducted a
23		
24	30	study over seven years to assess the controlling factors of CO_{2} and $N_{2}O_{3}$
25	00	
26		
27	40	emissions from unplanted and unfertilized soil in Mikasa, Hokkaido, Japan.
28		
29	4.4	Carbon diavide flux increased in the summer, and there were significant
30	41	Carbon dioxide nux increased in the summer, and there were significant
31 22		
32	42	positive correlations between the CO ₂ flux and soil temperature in the first four
24		
34	40	ware Haussian annount relationshine between CO flux and MEDC asil NU
36	43	years. However, apparent relationships between CO_2 flux and wFPS, soll NH ₄
37		
38	44	and NO ₃ concentrations were not observed. The slope of monthly CO ₂ emission
39		, , , , , , , , , , , , , , , , , , ,
40		
41	45	against mean monthly temperature was positively correlated with monthly
42		
43	46	precipitation. These results suggest that response of CO_2 production by increase
44		
45		
46	47	in soil temperature becomes more sensitive in wet soils. The average CO_2
47		
48	18	emission during the study period was 2.53 Mg C ha ⁻¹ yr^{-1} and uncertainty of the
49	40	childsion during the study period was 2.00 mg o har yr, and uncertainty of the
50		
51	49	annual CO ₂ emission was 24 %. Annual precipitation explained the yearly
52		
53		
54		
55		

50	variation (CO ₂ emission [Mg C ha ⁻¹ yr ⁻¹] = 0.0021×annual precipitation [mm yr ⁻¹] -
51	0.0499, <i>R</i> =0.976, <i>P</i> <0.001).
52	Nitrous oxide flux increased from July to October, and was positively
53	correlated with CO ₂ flux. Based on the ratio of N ₂ O-N:NO-N of fluxes, N ₂ O
54	appeared to be the main product of denitrification. The average $N_2 O$ emission in
55	the study period was 4.88 kg N ha $^{-1}$ yr $^{-1}$, and uncertainty of annual N2O emission
56	was 58.5 %. Strong relationships between the monthly emissions of CO_2 and
57	N_2O suggest that N_2O production by denitrification is strongly affected by SOM
58	decomposition. Unlike the CO_2 emission, the relationship between N_2O emission
59	and precipitation was not observed because of the multiple pathways of
60	nitrification and denitrification for N_2O production induced by SOM
60 61	nitrification and denitrification for N_2O production induced by SOM decomposition.
60 61 62	nitrification and denitrification for N_2O production induced by SOM decomposition.
60 61 62 63	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter
60 61 62 63 64	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.
60 61 62 63 64 65	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.
60 61 62 63 64 65	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.
60 61 62 63 64 65	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.
60 61 63 64 65	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.
60 61 63 64 65	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.
60 61 63 64 65	nitrification and denitrification for N ₂ O production induced by SOM decomposition. Key words: carbon dioxide, denitrification, nitrous oxide, soil organic matter decomposition, temporal variation.

67	The contributions of atmospheric carbon dioxide (CO ₂) and nitrous oxide (N ₂ O)
68	to global warming are reported to be 60% and 6%, respectively. Since the
69	Industrial Revolution, concentrations of these greenhouse gases in the
70	atmosphere have increased at a rate of 1.4 ppm yr^{-1} and 0.8 ppb yr^{-1} ,
71	respectively (Intergovernmental Panel on Climate Change (IPCC) 2007). The
72	emission of carbon (C) that has originated due to the change in land use from
73	1980 to 1989 contributes 24% of the global annual CO_2 emission. Similarly, the
74	emission of N_2O originating from agricultural fields in 1989 contributed 24% of
75	the total global N ₂ O emission (Mosier <i>et al.</i> 1998). Recently, the annual N ₂ O
76	emissions from fertilized cropland and grassland at a global level were estimated
77	at 3.3 and 0.8 Tg N yr ⁻¹ , respectively (Stehfest & Bouwman 2006).
78	Some studies have reported that there is a reduction in C from agricultural
79	soils because micro-organisms decompose soil organic matter (SOM) and emit
80	CO ₂ (Hu <i>et al</i> . 2004; Koga <i>et al</i> . 2006; Koizumi <i>et al</i> . 1993; Mu <i>et al</i> . 2006, 2008;
81	Shimizu et al. 2009). The reduction of C from soil has been estimated by a
82	difference in soil C over 20 years in a 0-30 cm soil surface (IPCC 2006; Paustian
83	et al. 1997). In recent years, the global warming potential (GWP) has been used

84	to evaluate the effect of agricultural activities on global warming (Chu et al. 2007;
85	Jones <i>et al.</i> 2006; Koga <i>et al.</i> 2006; Mosier <i>et al.</i> 2005, Mu <i>et al.</i> 2006;
86	Robertson & Grace 2004; Six et al. 2004). Therefore, it is necessary to estimate
87	the annual reduction of soil C in order to evaluate the annual effect of agricultural
88	activities on global warming. However, annual reduction of soil C is difficult to be
89	detected from the investigation of annual change in the amount of soil C,
90	because soil C is usually very large compared to C emission from the soil. In
91	agricultural fields, decomposition of SOM can be measured as the CO_2 emission
92	from bare fields in which root respiration is excluded (Hanson et al. 2000; Hu et
93	al. 2004; Mu et al. 2006, 2008; Shimizu et al. 2009; Subke et al. 2006). Since the
94	decomposition of SOM is resulted from microbial activities, it is influenced by
95	chemical and physical conditions such as soil temperature, water conditions, pH,
96	and so on. Due to the spatial variability of those factors (Yanai <i>et al</i> . 2003), it is
97	difficult to investigate the factors affecting the decomposition of SOM at the field
98	level. Understanding the factors affecting the decomposition of SOM, quantifying
99	the annual CO_2 emission from bare fields, and clarifying factors affecting the
100	temporal variations in annual CO_2 emissions from an unfertilized bare soil are
101	important to estimate the loss of C from soil. Those understandings will provide

102	beneficial information to the study of the effect of agricultural activities on C cycle
103	or global warming at a long-term span such as eco-balance or life cycle analysis
104	(Koga <i>et al</i> . 2006; Kimura <i>et al</i> . 2007).
105	Nitrous oxide is produced by nitrification and denitrification processes in the
106	soil. Therefore, N_2O emission is affected by the soil's chemical and physical
107	conditions (Bremner 1997; Colbourn & Dowdell 1984; Mosier 1998; Stehfest &
108	Bouwman 2006). Because ammonium (NH_4^+) is used in the nitrification process
109	and nitrate (NO $_3$) in the denitrification process, the N $_2O$ emission from
110	agricultural fields is usually in proportion to the N application rate (Bouwman
111	1996). Based on this, methods of estimating N_2O emissions from agricultural
112	fields have been proposed (IPCC 2006). In Tier 1 and 2 in the IPCC Guidelines
113	for National Greenhouse Gas Inventories (IPCC 2006), the emission factor (EF)
114	is the ratio of N-induced N_2O emission, which is a difference between N_2O
115	emissions from N-fertilized and unfertilized field, divided by the amount of
116	applied N fertilizer. However, to calculate the original EF values, the N_2O
117	emission originating from soil organic N should be considered, because N_2O
118	emission from the soil in agricultural fields is usually composed not only of N_2O
119	emissions originating from the applied N, but also of N_2O emissions induced by

http://mc.manuscriptcentral.com/sspn

120	decomposition of SOM. The N_2O emission from bare fields is regarded as the
121	emission originating from the soil organic N. There are several studies that have
122	reported annual N ₂ O emissions from unfertilized bare fields (Akiyama <i>et al.</i>
123	2006; Clayton <i>et al.</i> 1997; van Groenigen <i>et al.</i> 2004; Kamp <i>et al.</i> 1998; Koga <i>et</i>
124	al. 2004; Zou et al. 2005). In addition, a temporal variation in N_2O emission from
125	agricultural fields has been reported by several studies (Drury et al. 2006; Kusa
126	<i>et al.</i> 2002; Takakai <i>et al.</i> 2006; Zou <i>et al.</i> 2005). In any case, however, the
127	reported studies have not focused on the susceptible factors for N_2O flux or
128	annual N_2O emission from SOM. There are few studies focusing on analysis of
129	mechanisms of N_2O production and emission induced by SOM decomposition in
130	agricultural bare fields at a long-term span. The knowledge about the controlling
131	factors of N_2O flux and annual emissions will be also useful for the study of the
132	effect of agricultural activities on C cycle or global warming in a long run.
133	The objective of this study was to clarify the controlling factors for CO_2 and
134	N_2O emissions from agricultural bare soil based on seven years of monitoring in
135	central Hokkaido, Japan.
136	
137	MATERIALS AND METHODS

1		
3		
4		
5		
6 7	138	Site description
, 8		
9 10	139	This study was conducted in Mikasa, central Hokkaido, Japan (43°14.4 'N,
11 12 13	140	14150 'E). The soil type is Gray Lowland soil (Gleysol; FAO/UNESCO). The
14 15	141	mean annual temperature of the study site is 7.5 $^{ m C}$ and the mean annual
16 17 18	142	precipitation is 1164 mm, of which 32% is in the form of snow. The soil does not
19 20 21	143	freeze during the winter. Temperature usually increases in August and
22 23	144	precipitation increases from July to October (Fig. 1). At a depth of 0–10 cm, the
24 25 26	145	soil pH (H ₂ O) was 5.8 and the cation exchange capacity was 25.5 cmolc kg ⁻¹ .
27 28	146	The soil was comprised of sand (12.1%), silt (51.2%) and clay (36.7%).
29 30 31	147	Concentrations of soil C and N were 32.1 and 2.8 g kg ⁻¹ , respectively (Toma &
32 33 34	148	Hatano 2007) and the C:N ratio was 11.5 at a depth of 0–10 cm in 1996. Soil C
35 36	149	density was recorded as 108 Mg C ha ⁻¹ at a 0-30 cm depth.
37 38 39	150	
40 41 42	151	Experimental design
43 44	152	We set up an unfertilized bare plot (5 m \times 8 m) inside a 2-ha onion field owned
45 46 47	153	by a farmer in Mikasa in 1999 and conducted monitoring in 2000, from 2002 to
48 49 50	154	2005, and in 2007. In 2006, the unfertilized bare plot was shifted to another
50 51 52 53 54 55 56 57 58 59 60	155	location in the same field by the farmer due to unavoidable circumstances.

156	Conventional management practices for onion cultivation were carried out on the
157	studied plot every year, although chemical and organic fertilizers or residues
158	were not applied. Most of weed was removed from the monitoring plot regularly.
159	Onion is usually cultivated from May to September in Mikasa. The soil is usually
160	tilled before fertilization and plowed up to a depth of 15 cm at the end of April.
161	Onion roots are cut for harvest from mid to late August. The onion harvest is
162	followed by plowing, which is carried out to incorporate the residues into the soil
163	from the end of September to early October.
164	
165	Measurement of CO ₂ , N ₂ O, and NO fluxes
166	Fluxes of CO ₂ , N ₂ O, and NO were measured by a closed chamber method
167	(three or four replications) using two types of cylindrical stainless steel chambers
168	from 10:00 am to 2:00 pm. In 2000, chambers of 30 cm in diameter and 35 cm in
169	height were used (Kusa et al. 2002, 2006), whereas chambers of 20 cm in
170	diameter and 25 cm in height were used from 2002 to 2007. The cover of the
171	chamber was made of acryl and was equipped with a sample collector, a
172	pressure regulating bag and a Tedlar bag (0.5 L). In 2000 and from 2002 to 2004,
173	we inserted the chambers directly into the soil to a 2 cm depth and started

174	making measurements after 15 min. However, in 2005, 2006, and 2007, we used
175	a chamber-base made of stainless steel with a diameter of 20 cm. The upper
176	part of the chamber-base had a slight depression, which was filled with water to
177	seal it during the measurement (Toma & Hatano 2007; Toma et al. 2007). The
178	base was kept on the ground, except during plowing and was reset one day
179	before the next sampling.
180	Gas samples were taken at time 0 min from inside the chamber and 6 min. (for
181	CO_2) or 15 min. (for N ₂ O and NO) after closing the chamber (Nakano <i>et al.</i> 2004;
182	Toma & Hatano 2007). Using a 25 mL syringe, gas sample was taken ten times
183	(total volume of 250 mL), and the gas sample was injected into a Tedlar bag (0.5
184	L). The bags were then brought to the laboratory and 20 mL of each gas sample
185	was immediately transferred into glass vials (10 mL). From the samples of the
186	bags, CO_2 and NO were analyzed using an Infrared CO_2 Analyzer (Model
187	ZFP5YA3I, Fuji Electric, Tokyo, Japan) and a Chemoluminescence Nitrogen
188	Oxide Analyzer (Model 265P, Kimoto Electric, Osaka, Japan), respectively. From
189	the samples of the vials, N_2O was analyzed with an ECD Gas Chromatograph
190	(Model GC-14B, Shimadzu, Kyoto, Japan).
191	The gas fluxes were calculated using the following equation:

11 / 46

192	$F = \rho \times (V/A) \times (\Delta c / \Delta t) \times [273 / (273 + T)] \times (P / 760)$
193	where, F is the flux (mg N or C m ⁻² h ⁻¹), ρ is the gas density ($\rho N_2 O$ -N = 1.259
194	× 10 ⁶ , ρ CO ₂ -C = 0.536 × 10 ⁶ and ρ NO-N = 0.625 × 10 ⁶ mg m ⁻³), V is the volume
195	of the chamber (m ³), A is the area of the chamber (m ²), $\Delta c/\Delta t$ is the ratio of
196	change in the gas concentration inside the chamber (10^{-6} m ³ m ⁻³ h ⁻¹), T is the
197	air temperature inside the chamber (${}^{\ensuremath{\mathfrak{C}}}$), and P is the air pressure (mm Hg; see
198	Kusa <i>et al.</i> 2002; Toma & Hatano 2007).
199	A positive value of F indicates gas emission from the soil to the atmosphere,
200	while the negative value indicates gas uptake by the soil from the atmosphere.
201	Considering the machinery precision, N_2O flux values within the range from -6 to
202	6 μ g N m ⁻² h ⁻¹ , and CO ₂ flux values from -3.7 to 3.7 mg C m ⁻¹ h ⁻¹ and NO flux
203	values from -0.2 to 0.2 μ g N m ⁻² h ⁻¹ were regarded as 0 μ g N or C m ⁻² h ⁻¹ . The
204	annual CO ₂ and N ₂ O emissions were calculated assuming linear changes
205	between two sampling occasions.
206	The value of Q_{10} , which is a relative increase of CO ₂ flux for 10°C change in
207	soil temperature, was calculated based on the Arrhenius equation and following
208	equation (Hu et al. 2004): $k = A \times \exp(-E/RT) \rightarrow \ln k = \ln A - E/RT$

1		13 / 46
2 3 4 5		
6 7 8 9	209	$Q_{10} = \frac{A \times \exp\{-E / R(T + 10)\}}{A \times \exp(-E / RT)}$
10 11	210	where, k is the CO ₂ flux, A is a constant, E is the activation energy, R is the
12 13 14	211	universal gas constant (8.3144 J mol ⁻¹ K), and T is the absolute temperature (K).
15 16	212	The logarithm of the CO_2 flux and the reciprocal of absolute temperature of soil
17 18 19	213	were plotted, and E was determined from the slope. The value of Q_{10} was
20 21	214	calculated by using $T = 283$ (K), because mean monthly air temperatures in this
22 23 24	215	study site ranged from 10°C to 20°C (Fig. 1c and d) .
25 26 27	216	
28 29	217	Measurement of other variables and frequency of sampling
30 31 32	218	The soil temperature at a 5 cm depth was measured five times at the same time
33 34 35	219	of measuring CO ₂ , N ₂ O, and NO fluxes. Disturbed soil samples (0-5 cm depth)
36 37	220	were taken at five replications and were combined for one composite sample.
38 39 40	221	Soil solutions were extracted by using distilled water through the study period
41 42	222	and NH_4^+ -N, NO_3^- -N and water soluble organic carbon (WSOC) concentrations
43 44 45	223	were analyzed by colorimetry with indophenol-blue, ion chromatography (QIC
46 47	224	Analyzer, Dionex, Osaka, Japan) and total organic carbon analyzer (Model
48 49 50 51 52 53 54	225	TOC-5000A, Shimadzu, Kyoto, Japan), respectively. In 2007, soil NH_4^+ -N

226	concentration extracted by distilled water was not measured, and in 2006 and
227	2007, soil NH ₄ ⁺ -N concentration extracted by 2M KCI were analyzed. The
228	WSOC was not measured in 2000. The undisturbed soil samples were collected
229	by using a steel cylinder (100 mL) at three replicates and the water-filled pore
230	space (WFPS) was measured. The daily or annual meteorological data were
231	obtained from the local Iwamizawa Weather Station (4312.6 'N, 14147.3 'E).
232	After plowing, all samples were collected three times a week from May to June,
233	three times a month from July to August and once or twice a month during the
234	snow-cover season. During the period from snowmelt to onion cultivation and
235	from mid-October to snow cover, sampling was conducted two or three times per
236	month.
237	
238	Statistical analyses
239	Relationships between CO_2 and N_2O fluxes and soil physical and chemical
240	properties, or annual CO $_2$ and N $_2$ O emissions and of mean annual air
241	temperature or annual precipitation were analyzed by the linear or quadratic
242	curve regression. Variation in annual CO_2 or N_2O emissions among the study
243	period was evaluated by Tukey-Kramer test. The least significant difference test

	15 / 46
244	was used to determine significant differences ($P < 0.05$).
245	Uncertainties were calculated using the following equation:
246	Uncertainty (%) = {(two-sided 95% confidence interval)/2}/means x 100
247	The two-sided 95% confidence interval of CO_2 and N_2O emissions were
248	calculated by using the following equation:
249	Two-sided 95% confidence interval = $t(d.f., 0.05) \times tandard error \times 2$
250	where, d.f. is the degree of freedom, and t(d.f., 0.05) is the t value at 5%
251	significance level with two-sided alternative.
252	
253	
254	RESULTS
255	Seasonal variation in CO ₂ and N ₂ O fluxes
256	The CO $_2$ flux peaked from August to October (Fig. 2a, 3a), whereas the N $_2$ O flux
257	increased from the end of July to October in all years (Fig. 2b, 3b). Soil
258	temperature increased in August and this trend was similar to that of air
259	temperature (Fig. 4a,f). The WFPS was high in early April and November, and
260	low in August (Fig. 4b,g). From August to October, the WFPS was as low as
261	around 50%. Soil NH_4^+ -N concentrations extracted by distilled water ranged from

4	
1	
2	
3	
4	
5	
0	
6	
7	
8	
à	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
30	
20	
39	
40	
41	
42	
43	
-T-J //	
44	
45	
46	
47	
<u>4</u> 8	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
52	
50	
59	

262	0 to 7.6 mg N kg ⁻¹ each year and did not exhibit any consistent seasonal change
263	(Fig. 4c,h). Although NH_4^+ -N concentration extracted by 2M KCl in 2006 and
264	2007 did not show a distinct seasonal change (Fig. 4i), the range of
265	concentrations (1.67-11.3 mg N kg ⁻¹ in 2006, 0.84-29.9 mg N kg ⁻¹) was higher
266	than the values obtained through extraction by water. Soil NO_3^N concentrations
267	increased from August to September each year (Fig. 4d,j). Fluctuation in soil
268	WSOC concentrations was small throughout the year (Fig. 4e,k).
269	Correlation coefficients between the CO_2 or N_2O fluxes and soil physical and
270	chemical properties are given in Table 1. The CO_2 flux was significantly and
271	positively correlated with soil temperature from 2000 to 2004 (Table 1), and
272	reached its maximum at 48.8% of WFPS (Fig. 5a). Although the N_2O flux was
273	significantly and positively correlated with soil temperature in 2000 and 2004,
274	N_2O flux was significantly and positively correlated with CO_2 flux from 2000 to
275	2006. Carbon dioxide and N_2O fluxes were significantly correlated with soil
276	NO_3 -N concentration, and N_2O flux was significantly correlated with soil
277	temperature in 2000 and 2004. However, no significant correlation was observed
278	between CO_2 or N_2O fluxes and soil chemical or physical properties throughout
279	the study period. There were no significant correlations between N_2O flux and

	17 / 46
280	WFPS during the study period except for 2003, but N_2O showed high fluxes
281	when WFPS ranged from 30 to 60 % and reached its maximum at 48.4% (Fig.
282	5b).
283	The relationship between N ₂ O flux and N ₂ O-N:NO-N ratio is given in Fig. 6.
284	The N ₂ O flux increased with an increase in N ₂ O-N:NO-N ratio, with 18 out of 49 $$
285	samples of the N_2O flux over 0.079 mg N m ⁻² h ⁻¹ , which resulted in the ratio of
286	N_2 O-N:NO-N over 100. The average N_2 O flux was 0.079 mg N m ⁻² h ⁻¹ .
287	Therefore, about 37% of the N_2O fluxes were higher than the average value.
288	
289	Cumulative CO_2 and N_2O emissions
290	Table 2 shows the annual CO $_2$ and N $_2$ O emissions and Q $_{10}$ values. The annual
291	$\rm CO_2$ emission ranged from 2.04 to 3.32 Mg C ha ⁻¹ yr ⁻¹ , and were significantly
292	correlated with annual precipitation (Fig. 7, y = 0.0021 x -0.0499, $R = 0.98$, $P <$
293	0.01). The average CO ₂ emission during the study period was 2.53 Mg C ha ⁻¹
294	yr ⁻¹ , and uncertainty of annual CO ₂ emission was 24 %. The Q_{10} values ranged
295	from 1.11 to 2.38. There was no significant correlation between Q_{10} value and
296	annual precipitation (y = $0.0012x + 0.1918$, $R = 0.56$, $P = 0.11$). However, the
297	slope of the monthly CO_2 emission against mean monthly temperature from April

Soil Science and Plant Nutrition

4 5		
6 7	298	to October was significantly correlated with precipitation from April to October
8 9 10	299	(Fig. 8, y = $0.0688x - 27.67$, $R = 0.90$, $P < 0.01$). Carbon dioxide flux in this study
11 12	300	was measured only during the daytime, and annual CO_2 emission was
13 14 15	301	calculated assuming linear changes between two sampling occasions. This
16 17 18	302	indicated that the decrease in CO_2 flux during the night time, when temperature
19 20	303	decreased, was not considered in calculating the annual CO_2 emission from
21 22 23	304	2000 to 2004. The difference in maximum and minimum air temperature from
24 25	305	July to September, which was the period of high air temperature, was below
26 27 28	306	10°C (8.8°C). In addition, the average Q $_{10}$ value from 2000 to 2004 was 1.99
29 30 31	307	(Table 2). If we assume that the CO_2 flux during the maximum daily air
32 33	308	temperature is 1.99 times higher than the $\rm CO_2$ flux during minimum daily air
34 35 36	309	temperature, the measured annual CO_2 emission would be 1.33 times higher
37 38	310	than the annual CO_2 emission that was calculated by considering the daily
39 40 41	311	change in the CO_2 flux.
42 43	312	The annual N ₂ O emission ranged from 1.62 to 12.1 kg N ha ⁻¹ yr ⁻¹ . The average
44 45 46	313	N_2O emission during the study period was 4.88 kg N ha ⁻¹ yr ⁻¹ , and uncertainty of
47 48 49	314	the annual N ₂ O emission was 58.5 %. Uncertainty of yearly variation of CO_2 and
50 51	315	N_2O emissions were 17.9 and 76.1 %, respectively. Although correlations
52 53 54		
55 56		

Soil Science and Plant Nutrition

3 4 5		
6 7	316	between N_2O emission and annual air temperature or precipitation were not
8 9 10	317	significant, N_2O emission increased with an increase in CO_2 emission (Fig. 9).
11 12 13	318	Significant differences in annual CO_2 and N_2O emissions among the study years
14 15	319	indicate yearly variation of CO_2 and N_2O emission in the study site (Table 2).
16 17 18	320	
19 20	321	DISCUSSION
21 22 23	322	Key factors determining the CO ₂ flux in bare soil
24 25 26	323	Several studies reported that CO_2 flux from soil showed an exponential increase
27 28	324	with an increase in soil temperature (Boone et al. 1998; Hu et al. 2001; Jones et
29 30 31	325	al. 2006; Schindlbacher et al. 2009). In this study, there were significant positive
32 33 34	326	correlations between CO_2 flux and soil temperature (in 2000, 2002-2004) (Table
34 35 36	327	1). On the other hand, there was no significant correlation between CO_2 flux and
37 38 39	328	WFPS except in 2003 (Table 1). Gulledge and Schimel (1998) reported that
40 41	329	microbial respiration was directly proportional to the water holding capacity
42 43 44	330	(10-60%). Moreover, Linn and Doran (1984) and Gulledge and Schimel (1998)
45 46 47	331	reported that the maximum CO_2 production by microorganisms was at 60%
48 49	332	WFPS. In our study, CO_2 flux peaked at 49.1% of WFPS. Therefore, soil
50 51 52	333	moisture might not have influence on the production or emission of $\rm CO_2$ linearly,
53 54		
55 56 57		
58 59		

334	and there might be an appropriate condition of soil moisture for CO_2 production
335	relating to the ventilation of soil. On the other hand, significant positive
336	correlations between annual CO_2 emission and annual precipitation and
337	between the slope of monthly CO_2 emission against mean monthly temperature
338	from April to October and precipitation from April to October suggested that the
339	production of CO_2 was greater in wet conditions even if temperatures were
340	similar (Fig. 7, 8). Therefore, CO_2 production increased with an increase in soil
341	temperature, but CO_2 production at the same temperature was more enhanced
342	in wet conditions. High moisture content prevents soil gas from diffusing from soil
343	to the atmosphere. This means that even if CO_2 was produced in soil in
344	appropriate condition for CO_2 production, CO_2 might not necessarily be diffused
345	at that time. There could be possibilities of high CO_2 flux to be detected during
346	the season of high precipitation. Difference in timing between CO_2 production
347	and diffusion from soil to the atmosphere could possibly be explained by a lack
348	of correlation between CO_2 flux and WFPS and by a significant positive
349	correlation between annual CO_2 emission and precipitation (Table 1, Fig. 7).
350	
351	Key factors determining the N_2O flux in bare soil

Soil Science and Plant Nutrition

21 / 46

4 5		
6 7	352	Because N_2O is mainly produced by the processes of nitrification and
8 9 10	353	denitrification in soil (Tiedje 1994), N ₂ O flux is often affected by soil NH_4^+ -N or
11 12	354	NO ₃ ⁻ -N concentration (Livesley <i>et al.</i> 2009; Thornton & Valente 1996; Toma <i>et al.</i>
13 14 15	355	2007). However, no apparent correlation between N ₂ O flux and soil NH ₄ ⁺ -N or $\sqrt{Formatted: Superscript}$
16 17 18	356	NO ₃ -N concentration was observed in our study. Instead, we observed
19 20	357	significant positive correlations between N_2O and CO_2 fluxes in all years, except
21 22 23	358	for 2007 (Table 1). Similar positive correlations between N_2O and CO_2 fluxes
24 25 26	359	were observed when crop residues were mixed with surface soil (Huang et al.
27 28	360	2004; Toma & Hatano 2007). In this study, the substrates for the nitrification and
29 30 31	361	denitrification originated from SOM because no fertilizer was applied in the
32 33 34	362	experimental plot, suggesting that N_2O production was strongly related with
34 35 36	363	SOM decomposition. Therefore, one of the factors controlling the production of
37 38 39	364	N_2O could be the supply of C and inorganic N from SOM decomposition. Some
40 41	365	studies reported that soil temperature is one of the factors for N_2O production
42 43 44	366	(Kamp <i>et al</i> . 1998; Mori <i>et al</i> . 2005; Smith <i>et al</i> . 1998; Tokuda & Hayatsu 2004).
45 46 47	367	Since the CO_2 flux increased with an increase in soil temperature in this study
48 49	368	(Table 1), soil temperature might not affect only the activity of N_2O production but
50 51 52 53 54 55 56 57	369	also the supply of substrates for N_2O production. Bouwman (1990) summarized

370	the results presented by Anderson and Levine (1986) and Lipchults et al. (1981)
371	and reported that a value of N ₂ O-N:NO-N ratio below 1.0 indicates that N ₂ O was
372	produced in the soil mainly by a nitrification process, while a value above 100
373	indicates that denitrification was the dominant process for N_2O production. In our
374	study, About 37% of the N_2O fluxes that were higher than the average value,
375	therefore, occurred when there was a condition of N_2O -N:NO-N ratio to be above
376	100. Generally, an increase in soil moisture contributes to N_2O production by
377	denitrification (Linn & Doran 1984). It was reported that a WFPS of 50-60%
378	would be suitable for the decomposition of soil organic matter and that these
379	conditions accelerated denitrification due to the consumption of oxygen (Maag &
380	Vinther 1999). Moreover, WFPS of 50-60% was the range in which N_2O was
381	mainly produced by the denitrification process (Davidson et al. 2000). In our
382	study, WFPS increased from about 40 to 60% from the end of July to early
383	October, and N ₂ O flux was highest when the WFPS was at 46.5% (Fig. 4, 5).
384	Sawamoto and Hatano (2000) reported that an increase in N_2O production in
385	autumn might be caused by nitrate transportation and diffusion inside soil
386	aggregates after rainfall and development of denitrification areas inside the
387	aggregates of well-structured soil in the same field of our study site. Therefore,

388	there is a possibility of aerobic and anaerobic conditions occurring
389	simultaneously inside the aggregates and inter-aggregate pores in the
390	well-structured soil in this study. This would suggest that high N_2O fluxes were
391	induced not only by denitrification but also by nitrification. Nitrous oxide was the
392	main product of the denitrification process in this study.
393	Nitrous oxide fluxes were significantly correlated with CO ₂ flux, and production
394	of CO_2 was affected by soil temperature and precipitation. However, a significant
395	correlation between N ₂ O flux or annual N ₂ O emission and WFPS or annual
396	precipitation could not be found. This might be due to a complex process of N_2O
397	production in soil. In this study, the source of inorganic N might be mainly SOM.
398	Therefore, NH_4 and NO_3 , which are substrates for nitrification and denitrification,
399	could have been produced by mineralization and nitrification processes in soil. In
400	the study of N_2O emission from organic fertilizer, similar correlations between
401	N_2O and CO_2 emission were observed (Hayakawa <i>et al.</i> 2009). When N
402	originates from organic matter, decomposition of organic matter is probably
403	essential for producing N ₂ O. In any case, significant correlation between CO_2
404	flux and N ₂ O flux or monthly emission of CO ₂ and N ₂ O suggest that climate
405	change, which will affect SOM decomposition, might greatly affect N_2O emission

406 induced by SOM decomposition.

Annual CO₂ emission and its spatial and temporal variations The annual CO₂ emission, associated with decomposition of SOM, ranged from 2.04 to 3.32 Mg C ha⁻¹ yr⁻¹ (Table 2). The values of CO₂ emission from 2000 to

411 2004, however, might have been overestimated about 1.33 times because daily

412 variation in CO₂ flux was not considered. Therefore, if we consider the

413 overestimation of CO₂ emission, annual CO₂ emission ranged from 1.11 to 2.95

414 Mg C ha⁻¹ yr⁻¹. Mu *et al.* (2006) reported that CO_2 emitted from SOM in bare

415 treatments in several types of land use (e.g. wheat, maize, onion, etc.) ranged

416 from 3.01 to 5.68 Mg C ha⁻¹ yr⁻¹ in Hokkaido, Japan. Jacinthe *et al.* (2002)

417 reported that 4.37 Mg C ha⁻¹ yr⁻¹ of CO₂ was emitted from a bare plot in Ohio,

418 USA. Decomposition of SOM in the two studies might have been overestimated

similar to our study because they used the trapezoidal rule to calculate annual

420 CO₂ emission. Koizumi *et al.* (1994) reported that heterotrophic respiration

421 ranged from 7.16 to 10.5 Mg C ha⁻¹ yr⁻¹ in three double-cropping

422 agro-ecosystems (rice-barley, peanut-wheat, and dentcorn-italian ryegrass).

423 They determined the SOM decomposition as the difference between total soil

Soil Science and Plant Nutrition

424	respiration and plant respiration by calculating soil and root respirations using
425	continuous data of soil temperature and the correlations between soil
426	temperature and soil or root respirations. Koga et al. (2006) reported average
427	SOM decomposition at a 20-year time scale since 1981 as 1.04 to 1.34 Mg C
428	ha ⁻¹ yr ⁻¹ from the difference in total soil C within a depth of 20 cm in Hokkaido,
429	Japan. The decomposition rate of SOM reported by Koizumi et al. (1994) and
430	Koga <i>et al.</i> (2006) might not have been overestimated, and were larger, and
431	smaller than the values in this study, respectively. The reason of the difference in
432	SOM decomposition may be due to the variation in location, cultivation system,
433	and soil type of the study site. The mean annual temperature (13.1 $^{\circ}$ C) of the
434	study site reported by Koizumi <i>et al.</i> (1994) was higher than that in our study site.
435	In addition, there were frequent tillage operations because of a double-cropping
436	system. High temperature and frequency of plowing may have increased SOM
437	decomposition in the study reported by Koizumi et al. (1994). On the other hand,
438	the study site of Koga <i>et al.</i> (2006) was located in similar latitude (4253 'N) as
439	this study. Therefore, difference in SOM decomposition between our study and
440	the study conducted by Koga <i>et al.</i> (2006) might be due to the differences in crop
441	management tillage, and/or soil type. Mu <i>et al.</i> (2008) reported that CO_2

Deleted: lager

Soil Science and Plant Nutrition

442	emission from bare soil reached to its maximum at 60-70% of the sum of silt and
443	clay content in soil. Moreover, Bellamy et al. (2005) reported that an amount of C
444	during 25-year was decreased with an increase soil C content. In these studies,
445	however, soil type of Andisols was not included. Further study about the
446	difference in SOM decomposition in various soil types will be required.
447	Carbon dioxide emission was measured at the same location in this study site
448	from 2000 to 2005. During this period, average annual CO_2 emission was 2.84
449	Mg C ha ⁻¹ yr ⁻¹ , and 17 Mg C ha ⁻¹ was estimated to be released from soil in 2000 -
450	2005. Because mass of C in surface (0-30cm) soil was 108 Mg C ha ⁻¹ , C loss of
451	17 Mg C ha ⁻¹ corresponded to 15.7 % of surface soil C. We did not measure the
452	change in soil C storage during the study period. Therefore actual value of
453	reduction in soil C could not be shown in this study. Mass of soil C possibly could
454	be detected, if soil C change was measured during this study. Bellamy et al.
455	(2005), however, reported that loss of soil C was not detectable over 10 years
456	when soil C content was lower than 50 g kg ⁻¹ . Detecting the change in soil C in
457	this study site might be difficult. There are several ways of C input in agricultural
458	fields such as rainfall, weed, and alga. But most of weed or alga did not exist
459	during the study period. Carbon input from rainfall was not included in the IPCC

1		27 / 40
2		
3		
4		
5 6 7	460	guideline for calculating soil C change (IPCC 2006). Thus, there might be no
8 9 10	461	major C inflow that supplemented soil C loss by SOM decomposition. Further
10 11 12	462	study would be required for matching the reduction of soil C and $\rm CO_2$ emission
13 14 15	463	from unfertilized bare soil.
16 17 18	464	A large variation in CO_2 fluxes and annual CO_2 emissions among replication
19 20 21	465	were observed due to the spatial variation in CO_2 flux (Fig. 2a, 3a, and Table 2).
22 23	466	The average uncertainty of annual CO_2 emission (24 %) was higher than that of
24 25 26	467	annual CO_2 emission (17.9 %). The decomposition of SOM is generally affected
27 28 29	468	by soil properties (Koizumi <i>et al</i> . 1993; Mu <i>et al</i> . 2008), method of cultivation
30 31	469	(Koga <i>et al.</i> 2006), or land use practices (Mu <i>et al.</i> 2006). Mu <i>et al.</i> (2008)
32 33 34	470	reported a significant correlation between CO_2 emission and clay and silt content
35 36 37	471	in a bare field in the same district of our study site. In the study field, spatial
38 39	472	variation in total C content, soil C:N ratio, and microbial biomass C were reported
40 41 42	473	(Yanai <i>et al.</i> 2003). These factors possibly cause large uncertainty in annual CO_2
43 44 45	474	emission. Using a larger chamber or taking more replication for CO_2 flux
46 47	475	measurement might be required to improve an accuracy of annual \mbox{CO}_2
48 49 50	476	emissions.
51 52 53 54 55 56 57 58 59 60	477	Significant differences in annual CO_2 emissions from bare field during the

1
2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
44
77
40
46
47
48
49
50
50
51
52
53
54
55
56
50
5/
58
59
60

478	study period show that there is a yearly variation in annual CO_2 emission that is
479	induced by the SOM decomposition (Table 2). A large uncertainly (17.9%) of the
480	average of annual CO_2 emission during the study period shows that continuous
481	monitoring of CO_2 emission is required to determine the representative value of
482	annual CO_2 emission. This yearly variation in annual CO_2 emission may suggest
483	that climate will have a great impact on yearly CO_2 emission from SOM. Raich
484	and Schlesinger (1992) reported that soil respiration, including root respiration,
485	increased with an increase in annual precipitation or mean annual air
486	temperature. Our study also showed that annual precipitation affect CO_2
487	emission from mineralization of SOM in the study site.
488	Previous studies reported that the effect of chemical fertilizer application on
489	microbial respiration is negligible (Ginting et al. 2003; Hu et al. 2004; Jacinthe et
490	al. 2002). Hence, CO ₂ emissions obtained in this study could be an
491	approximation of SOM decomposition in a fertilized field. Several studies
492	reported that soil C decreased in agricultural fields with low levels of organic
493	matter application (Ginting et al. 2003; Hu et al. 2004; Jacinthe et al. 2002; Mu et
494	al. 2008; Shimizu et al. 2009). The loss of soil C is reported to have a greater
495	influence on global warming than the emissions of N_2O or CH_4 (Jones <i>et al.</i>

496	2006; Koga <i>et al.</i> 2006; Mosier <i>et al.</i> 2005; Mu <i>et al.</i> 2006). Although it is difficult
497	to calculate an annual loss of C by measuring soil C reduction, it could possibly
498	be done by measuring CO_2 emission from bare soil in an agricultural field.
499	Assessing CO_2 emissions from bare fields, by calculating from the correlation
500	between CO_2 emission and available environmental factors such as
501	meteorological data or soil type, will be useful for cultivation management or
502	planning of farm activities at a regional scale to mitigate C loss from soil.
503	
504	Annual N_2O emission and its spatial and temporal variations
505	The annual N ₂ O emission in this study ranged from 1.62 to 12.1 kg N ha ⁻¹ yr ⁻¹
506	(average 4.88 kg N ha ⁻¹ yr ⁻¹). These values are higher than most reported values
507	for bare fields (1.00 kg N ha ⁻¹ yr ⁻¹ (IPCC 2006), -0.02-0.13 kg N ha ⁻¹ yr ⁻¹ (Koga <i>et</i>
508	<i>al</i> . 2004), 0.14-1.52 kg N ha ⁻¹ yr ⁻¹ (van Groenigen <i>et al</i> . 2004) or 0.36-0.14 kg N
509	ha ⁻¹ yr ⁻¹ (Akiyama <i>et al</i> . 2006), 4.80 kg N ha ⁻¹ yr ⁻¹ (Kamp <i>et al</i> . 1998) or 4.25 kg N
510	ha ⁻¹ yr ⁻¹ (Zou <i>et al.</i> 2005). The difference in annual N ₂ O emission might be due to
511	soil physical and chemical properties. Nitrogen content in soil may affect N_2O
512	production because there is no any N source for a substrate of N_2O in bare soil
513	except for N in SOM. Klemedtsson et al. (2005) reported at significant negative

30 / 46

514	relationship between N_2O emission and soil C:N ratio in forested peat soil in
515	Europe, indicating that N ₂ O emission increased with an increase in relative N to $\sqrt{Formatted: Font: Italic}$
516	C in peat. Nitrogen contents of the soils in the study sites of Kamp <i>et al.</i> (1998)
517	(1.7 g kg ⁻¹) and Zou <i>et al.</i> (2005) (1.1 g kg ⁻¹), in which N ₂ O emissions exceeded
518	4.0 kg N ha ⁻¹ , were lower than the value of this study site (2.8 g kg ⁻¹). Production
519	of N ₂ O in poorly drained soil increases due to an anaerobic condition in soil (van
520	Groenigen et al. 2004). Nitrous oxide emission reported by Koga et al. (2004)
521	was lower than the value of this study even if N content in their study site
522	(2.4-3.1 g kg ⁻¹) was similar to that of our study. This could possibly be due to the $\sqrt{Formatted: Font: Italic}$
523	drainage quality of soil. Soil type in the study site of Koga <i>et al.</i> (2004) is
524	well-drained volcanic ash soil. Therefore, N concentration as a source of
525	substrate for N_2O and drainage condition that may control aerobic- and
526	anaerobic condition of soil might be indicator of the potential N_2O source from
527	unfertilized bare field.
528	Large variations in flux and annual emission of both N_2O and CO_2 were
529	observed in our study (Fig. 1b, 2b and Table 2). There is considerable
530	uncertainty in the amount of N_2O emission from unfertilized bare fields (Akiyama
531	et al. 2006; Zou et al. 2005). Both CO ₂ and N ₂ O emissions were influenced by

532	soil properties (van Groenigen et al. 2004) and cultivation methods (Koga et al.
533	2004). In this study site, high spatial variability (CV 217%) of N_2O flux was
534	reported (Yanai et al. 2003). Yanai et al. (2003) also reported that soil organic
535	matter and soil pH were main soil-related determining factors for N_2O flux.
536	The temporal variation in N_2O was confirmed to be similar to that in some
537	previous studies (Drury et al. 2006; Kusa et al. 2002; Takakai et al. 2006; Zou et
538	al. 2005). In this study, neither N fertilizer nor crop residue was applied in the
539	experimental plot from 1999 to 2005. Therefore, it is expected that the substrate
540	required for production of N ₂ O had been reduced. However, the annual N ₂ O
541	emission did not consistently decrease from 2000 to 2005, resulting in a large
542	uncertainty of annual N_2O emission (Table 2). This suggests that the effect of
543	climatic factors on N_2O emission might be greater than the reduction in substrate
544	required for N_2O production. Annual N_2O emission tended to increase with an
545	increase in annual precipitation. The relationship between annual N_2O emission
546	and annual precipitation was not significant, whereas annual CO_2 emission was
547	significantly correlated with annual precipitation (Fig. 7). The reason for this
548	could be due to the fact that there is a difference in environmental factors that is
549	required for mineralization, nitrification, and denitrification. In mineralization and

nitrification processes, oxygen is required for oxidation of organic C or NH₄.
However, an anaerobic condition is required for denitrification because NO₃ is
used as an electron capture (Bouwman and Boumans 2001). Since N₂O was
produced through these three biological processes in soil, a correlation between
annual N₂O emission and annual precipitation may not be significant.

556 ACKNOWLEDGEMENTS

557 This study was financially supported by the Global Environmental Research

558 Program of the Ministry of the Environment of Japan (No. S-2). The authors

559 thank the farm owner Takeshi Morimoto for allowing us to conduct this study.

560 REFERENCES	560	REFERENCES
----------------	-----	------------

561	Akiyama H, Yan XY, Yagi K 2006: Estimations of emission factors for
562	fertilizer-induced direct N_2O emissions from agricultural soils in Japan:
563	Summary of available data. Soil Sci. Plant Nutr., 52, 774-787.
564	Anderson IC, Levine J 1986: Relative rates of nitric oxide and nitrous oxide
565	productio by nitrifiers, denitrifiers, and nitrate respirers. Appl. Environ.
566	<i>Microbiol.</i> , 51 , 938-945.
567	Bellamy PH, Loveland PJ, Ian Bradley R, Lark RM, Kirk GJD 2005: Carbon
568	losses from all soils across England and Wales 1978-2003. Nature, 437,
569	245-248.
570	Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP 1998: Roots exert a strong
571	influence on the temperature sensitivity of soil respiration. Nature, 396,
572	570-572.
573	Bouwman AF 1990: Nitric oxide and nitrogen dioxide. Soils and the Greenhouse
574	Gas Effect. Ed. AF Bouwman, pp. 120-124, John Wiley & Sons, Great
575	Britain.
576	Bouwman AF 1996: Direct emission of nitrous oxide from agricultural soils. Nutr.
577	Cycl. Agroecosyst., 46, 53-70.

2 3 4		
5 6 7	578	Bouwman A., Boumans L.J.M., Batjes N.H. (2001) Global estimates of gaseous
8 9 10	579	emissions of NH ₃ , NO and N_2O from agricultural land. Food and agriculture
11 12	580	organization of the unites nations, Rome, Italy.
13 14 15	581	Bremner JM 1997: Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst., 49,
16 17 18	582	7-16.
19 20	583	Chu H, Hosen Y, Yagi K 2007: NO, N ₂ O, CH ₄ and CO ₂ fluxes in winter barley
21 22 23	584	field of Japanese Andisol as affected by N fertilizer management. Soil Biol.
24 25 26	585	Biochem., 39, 330-339.
27 28	586	Clayton H, McTaggart IP, Parker J, Swan L, Smith KA 1997: Nitrous oxide
29 30 31	587	emissions from fertilised grassland: A 2-year study of the effects of N
32 33	588	fertiliser form and environmental conditions. <i>Biol. Fertil. Soils</i> , 25 , 252-260.
34 35 36	589	Colbourn P, Dowdell RJ 1984: Denitrification in field soils. Plant and Soil, 76,
37 38 39	590	213-226
40 41	591	Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E 2000: Testing a
42 43 44	592	conceptual model of soil emissions of nitrous and nitric oxides. Bioscience,
45 46 47	593	50 , 667-680.
47 48 49	594	Drury CF, Reynolds WD, Tan CS, Welacky TW, Calder W, McLaughlin NB 2006:
50 51 52 53 54 55 56	595	Emissions of nitrous oxide and carbon dioxide: influence of tillage type and
57 58 59 60		

596	nitrogen placement depth. Soil Sci. Soc. Am. J., 70, 570-581.
597	Ginting D, Kessavalou A, Eghball B, Doran JW 2003: Greenhouse gas
598	emissions and soil indicators four years after manure and compost
599	applications. J. Environ. Qual., 32 , 23-32.
600	Gulledge J, Schimel JP 1998: Moisture control over atmospheric CH_4
601	consumption and CO2 production in diverse Alaskan soils. Soil Biol.
602	<i>Biochem.</i> , 30 , 1127-1132.
603	Hayakawa A, Akiyama H, Sudo S, Yagi K 2009: N ₂ O and NO emissions from an
604	Andisol field as influenced by pelleted poultry manure. Soil Biol. Biochem.,
605	41 , 521-529.
606	Hanson PJ, Edwards NT, Garten CT, Andrews JA 2000: Separating root and soil
607	microbial contributions to soil respiration: A review of methods and
608	observations. <i>Biogeochemistry</i> , 48 , 115-146.
609	Hu RG, Kusa K, Hatano R 2001: Soil respiration and methane flux in adjacent
610	forest, grassland, and cornfield soils in Hokkaido, Japan. Soil Sci. Plant Nutr.,
611	47 , 621-627.
612	Hu R, Hatano R, Kusa K, Sawamoto T 2004: Soil respiration and net ecosystem
613	production in an onion field in central Hokkaido, Japan. Soil Sci. Plant Nutr.,

1		
2 3		
4 5		
6 7	614	50, 27-33.
8 9 10	615	Huang Y, Zou J, Zheng X, Wang Y, Xu X 2004: Nitrous oxide emissions as
11 12 13	616	influenced by amendment of plant residues with different C:N ratio. Soil Biol.
14 15	617	Biochem., 36, 973–981.
16 17 18	618	Intergovernmental Panel on Climate Change 2006: IPCC Guidelines for National
19 20 21	619	Greenhouse Gas Inventories, Vol. 4. Agriculture, Forestry and Other Land
22 23	620	Use, N_2O emission from managed soils, and CO_2 emission from lime and
24 25 26	621	urea application, the Institute for Global Environmental Strategies (IGES) fro
27 28	622	the IPCC, http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html.
29 30 31	623	Intergovernmental Panel on Climate Change 2007: IPCC Forth Assessment
32 33 34	624	Report: Climate Change 2007, the Physical Science Basis, Technical
35 36	625	Summary,
37 38 39	626	http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assess
40 41 42	627	ment_report_wg1_report_the_physical_science_basis.htm.
42 43 44	628	Jacinthe PA, Lal R, Kimble JM 2002: Carbon budget and seasonal carbon
45 46 47	629	dioxide emission from a central Ohio Luvisol as influenced by wheat residue
48 49	630	amendment. Soil. Till. Res., 67, 147-157.
50 51 52 53 54	631	Jones SK, Rees RM, Kosmas D, Ball BC, Skiba UM 2006: Carbon sequestration
56 57		
58 59 60		

in a temperate grassland; management and climatic controls. Soil Use Manag., 22, 132-142. Kamp T, Steindl H, Hantschel RE, Beese F, Munch JC 1998: Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biol. Fertil. Soils, 27, 307-314. Kimura SD, Mu ZJ., Toma Y, Hatano R 2007: Eco-balance analysis of six agricultural land uses in the Ikushunbetsu watershed. Soil Sci. Plant Nutr., , 373-386. Koga N, Tsuruta H, Sawamoto T, Nishimura S, Yagi K 2004: N₂O emission and CH₄ uptake in arable fields managed under conventional and reduced tillage cropping systems in northern Japa. Glob. Biogeochem. Cycl., 18, GB4025, doi:10.1029/2004GB002260. Koga N, Sawamoto T, Tsuruta H 2006: Life cycle inventory-based analysis of greenhouse gas emissions from arable land farming systems in Hokkaido, northern Japan. Soil Sci. Plant Nutr., 52, 564-574. Koizumi H, Usami Y, Satoh M 1993: Carbon dynamics and budgets in 3 upland double-cropping agro-ecosystem in Jpan. Agric. Ecosyst. Environ., 43, 235-244.

2 3 4		
5 6 7	650	Klemedtsson L, Arnold KV, Weslien P, Gundersen P 2005: Soil CN ratio as a
8 9 10	651	scalar parameter to predict nitrous oxide emissions. Glob. Change Biol., 11,
11 12	652	1142-1147.
13 14 15	653	Kusa K, Sawamoto T, Hatano R 2002: Nitrous oxide emissions for 6 years from a
16 17 18	654	gray lowland soil cultivated with onions in Hokkaido, Japan. Nutr. Cycl.
19 20	655	Agroecosyst., 63 , 239-247.
21 22 23	656	Kusa K, Hu RG, Sawamoto T, Hatano R 2006: Three years of nitrous oxide and
24 25	657	nitric oxide emissions from silandic andosols cultivated with maize in
26 27 28	658	Hokkaido, Japan. <i>Soil Sci. Plant Nutr.</i> , 52, 103-113.
29 30 31	659	Linn DM, Doran JW 1984: Effect of water-filled pore-space on carbon-dioxide
32 33	660	and nitrous-oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J.,
34 35 36	661	48 , 1267-1272.
37 38	662	Lipschultz F, Zafiriou OC, Wofsy SC, McElroy MB, Valois FW, Watson SW 1981:
39 40 41	663	Production of NO and N ₂ O by soil nitrifying bacteria. <i>Nature</i> , 294 , 641-643.
42 43 44	664	Livesley SJ, Kiese R, Miehle P, Weston CJ, Butterbach-Bahl K, Arndt SK 2009:
45 46	665	Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata
47 48 49	666	woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus
50 51 52	667	globulus plantations. Glob. Chane Biol., 15 , 425-440.
53 54 55		
56 57		
58 59 60		

Maag M, Vinther FP 1999: Effect of temperature and water on gaseous emissions from soils treated with animal slurry. Soil Sci. Soc. Am. J., 63, 858-865. Mori A, Hojito M, Kondo H, Matsunami H, Scholefield D 2005: Effects of plant species on CH₄ and N₂O fluxes from a volcanic grassland soil in Nasu, Japan. Soil Sci. Plant Nutr., 51, 19-27. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O 1998: Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosyst., 52, 225-248. Mosier AR, Halvorson AD, Peterson GA, Robertson GP, Sherrod L 2005: Measurement of net global warming potential in three agroecosystems. Nutr. Cycl. Agroecosyst., 72, 67-76. Mu ZJ, Kimura SD, Hatano R 2006: Estimation of global warming potential from upland cropping systems in central Hokkaido, Japan. Soil Sci. Plant Nutr., 52, 371-377. Mu ZJ, Kimura SD, Toma Y, Hatano R 2008: Evaluation of the soil carbon budget

41 / 46

686	under different upland cropping systems in central Hokkaido, Japan. Soil Sci.
687	<i>Plant Nutr.</i> , 54, 650-661.
688	Nakano T, Sawamoto T, Morishita T, Inoue G, Hatano R 2004: A comparison of
689	regression methods for estimating soil-atmosphere diffusion gas fluxes by a
690	closed-chamber technique. Soil Biol. Biochem., 36, 107-113.
691	Paustian K, Andren O, Janzen HH, Smith P, Tian G, Tissen H, van Noordwijk M,
692	Woomer PL 1997: Agricultural soils as a sink to mitigate CO ₂ emissions. Soil
693	Use Manag., 13, 230-244.
694	Raich JW, Schlesinger WH 1992: The global carbon-dioxide flux in soil
695	respiration and its relationship to vegetation and climate. Tellus Series
696	B-Chemical and Physical Meteorology, 44, 81-99.
697	Robertson G, Grace P 2004: Greenhouse Gas Fluxes in Tropical and Temperate
698	Agriculture: The need for a Full-Cost accounting of Global Warming
699	Potentials. Environ., Dev. Sustain., 6, 51-63.
700	Sawamoto T, Hatano R 2000: N_2O flux from a well-structured gray lowland soil
701	cultivated for onion in Hokkaido, Japan. Japanese J. Soil Sci. Plant Nutr., 71,
702	659-665. (in Japanese)
703	Shimizu M, Marutani S, Desyatkin AR, Jin T, Hata H, Hatano R 2009: The effect

704	of manure application on carbon dynamics and budgets in a managed
705	grassland of Southern Hokkaido, Japan. Agric. Ecosyst. Environ., 130,
706	31-40.
707	Schindlbacher A, Zechmeister-Boltenstern S, Jandl R 2009: Carbon losses due
708	to soil warming: Do autotrophic and heterotrophic soil respiration respond
709	equally? Glob. Change Biol., 15, 901-913.
710	Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K 2004: The
711	potential to mitigate global warming with no-tillage management is only
712	realized when practised in the long term. Glob. Change Biol., 10, 155-160.
713	Smith KA, McTaggart IP, Dobbie KE, Conen F 1998: Emissions of N ₂ O from
714	Scottish agricultural soils, as a function of fertilizer N. Nutr. Cycl.
715	Agroecosyst., 52 , 123-130.
716	Stehfest E, Bouwman L 2006: N_2O and NO emission from agricultural fields and
717	soils under natural vegetation: summarizing available measurement data
718	and modeling of global annual emissions. Nutr. Cycl. Agroecosyst., 74,
719	207-228.
720	Subke JA, Inglima I, Cotrufo MF 2006: Trends and methodological impacts in
721	soil CO ₂ efflux partitioning: A metaanalytical review. Glob. Change Biol., 12 ,

1		43 / 40
2		
3		
4		
5		
6	700	021-043
7	122	921-943.
8		
9	723	Takakai F, Morishita T, Hashidoko Y, Darung U, Kuramochi K, Dohong S, Limin
10		
11		
12	724	SH, Hatano R 2006: Effects of agricultural land-use change and forest fire on
13		
14	725	N ₂ O emission from tropical peatlands. Central Kalimantan, Indonesia, Soil
15	•	
16		
17	726	Sci. Plant Nutr., 52, 662-674.
18		
19	727	Thornton FC. Valente R I 1996: Soil emissions of nitric oxide and nitrous oxide
20	121	
21		
22	728	from no-till corn. S <i>oil Sci. Soc. Am. J</i> ., 60, 1127-1133.
23		
24	720	Tiedie IM 1994: Methods of Soil Analysis Part 2 SSSA Madison
25	125	Theaje Sin 1994. Methods of Son Analysis. Fart 2, SSSA, Madison.
26		
27	730	Tokuda S, Hayatsu M 2004: Nitrous oxide flux from a tea field amended with a
28		
29	721	large amount of nitrogen fertilizer and soil environmental factors controlling
3U 21	731	large amount of minogen reminizer and soli environmental factors controlling
32		
32 33	732	the flux. Soil Sci. Plant Nutr., 50, 365-374.
31 31		
35 35	700	Tomo V. Hotopo B. 2007: Effect of eren regidue C.: Niretio on N.O. emissione from
36	133	Torna F, Halano R 2007. Effect of crop residue C . N Tallo of N ₂ O emissions from
37		
38	734	Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci. Plant Nutr., 53,
39		
40	705	100 205
41	135	196-205.
42		
43	736	Toma Y, Kimura SD, Hirose Y, Kusa K, Hatano R 2007: Variation in the emission
44		
45	707	factor of N.O. derived from observed ritrogen fartilizer and experie metter.
46	131	factor of N_2O derived from chemical hidrogen fertilizer and organic matter. A
47		
48	738	case study of onion fields in Mikasa, Hokkaido, Japan. Soil Sci. Plant Nutr.,
49		- , , , , , , , , , , , , , , , , , , ,
50	700	F2 000 700
51	139	JJ , 092-703.
52		
つづ F 4		
04 55		
50 56		

740	van Groenigen JW, Kasper GJ, Velthof GL, van den Pol-van Dasselaar A,
741	Kuikman PJ 2004: Nitrous oxide emissions from silage maize fields under
742	different mineral nitrogen fertilizer and slurry applications. Plant and Soil,
743	263, 101-111.
744	Yanai J, Sawamoto T, Oe T, Kusa K, Yamakawa K, Sawamoto T, Naganawa T,
745	Inubushi K, Hatano R, Kosaki T 2003: Spatial variability of nitrous oxide
746	emissions and their soil-related determining factors in an agricultural field. J.
747	Environ. Qual., 32, 1965-1977.
748	Zou JW, Huang Y, Lu YY, Zheng XH, Wang YS 2005: Direct emission factor for
749	N_2O from rice-winter wheat rotation systems in southeast China. Atmos.
750	Environ., 39, 4755-4765.
751	

 Figure legends. Figure 1 Seasonal variations in monthly precipitation [a, b] and mean monthly air temperature [c, d]. Figure 2 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄*-N [c, h & J], NO₃*-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 		45 / 46
 Figure legends. Figure 1 Seasonal variations in monthly precipitation [a, b] and mean monthly air temperature [c, d]. Figure 2 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄*-N [c, h & J], NO₃N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 		
 Figure 1 Seasonal variations in monthly precipitation [a, b] and mean monthly air temperature [c, d]. Figure 2 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄*-N [c, h & J], NO₃*-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 	752	Figure legends.
 air temperature [c, d]. Figure 2 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄*-N [c, h & J], NO₃*-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 	753	Figure 1 Seasonal variations in monthly precipitation [a, b] and mean monthly
 Figure 2 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄⁺-N [c, h & J], NO₃⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 	754	air temperature [c, d].
 Figure 2 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄⁺-N [c, h & J], NO₃⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 	755	
 2002, and 2003. Arrows indicate the timing of plowing. Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄⁺-N [c, h & J], NO₃⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 	756	Figure 2 Seasonal variations in CO_2 [a], N_2O [b], and NO [c] fluxes in 2000,
 Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄⁺-N [c, h & J], NO₃⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. 	757	2002, and 2003. Arrows indicate the timing of plowing.
 Figure 3 Seasonal variations in CO₂ [a], N₂O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄⁺-N [c, h & J], NO₃⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. Figure 7 Relationship between CO₂ emission and annual precipitation 	758	
 2007. Arrows indicate the timing of plowing. Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH4⁺-N [c, h & J], NO3⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO2 or N2O fluxes and WFPS. Figure 6 Relationship between N2O flux and N2O-N:NO-N ratio. Figure 7 Relationship between CO2 emission and annual precipitation 	759	Figure 3 Seasonal variations in CO_2 [a], N_2O [b], and NO [c] fluxes from 2004 to
 Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH₄⁺-N [c, h & J], NO₃⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. Figure 7 Relationship between CO₂ emission and annual precipitation. 	760	2007. Arrows indicate the timing of plowing.
 Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH4⁺-N [c, h & J], NO3⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO2 or N2O fluxes and WFPS. Figure 6 Relationship between N2O flux and N2O-N:NO-N ratio. Figure 7 Relationship between CO2 emission and appual precipitation 	761	
 NH4⁺-N [c, h & J], NO3⁻-N [d & i], and WSOC [e & j] concentrations. Figure 5 Relationships between CO2 or N2O fluxes and WFPS. Figure 6 Relationship between N2O flux and N2O-N:NO-N ratio. Figure 7 Relationship between CO2 emission and appual precipitation. 	762	Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil
 Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. Figure 7 Relationship between CO₂ emission and annual precipitation 	763	NH_4^+ -N [c, h & J], NO ₃ ⁻ -N [d & i], and WSOC [e & j] concentrations.
 Figure 5 Relationships between CO₂ or N₂O fluxes and WFPS. Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. Figure 7 Relationship between CO₂ emission and annual precipitation 	764	
 Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. Figure 7 Relationship between CO₂ emission and annual precipitation 	765	Figure 5 Relationships between CO_2 or N_2O fluxes and WFPS.
 Figure 6 Relationship between N₂O flux and N₂O-N:NO-N ratio. Figure 7 Relationship between CO₂ emission and annual precipitation 	766	
 768 769 Figure 7 Relationship between CO₂ emission and annual precipitation 	767	Figure 6 Relationship between N ₂ O flux and N ₂ O-N:NO-N ratio.
769 Figure 7 Relationship between CO ₂ emission and annual precipitation	768	
	760	Figure 7 Relationship between CO_{α} emission and annual precipitation

2		
3 4		
5		
6 7	770	
8 9 10	771	Figure 8 Relationship between slope of the monthly CO_2 emission against mean
11 12 13	772	monthly temperature and precipitation from April to October.
14 15	773	
16 17 18	774	Figure 9 Relationship between monthly CO_2 emission and N_2O emission from
19 20 21	775	April to October.
22		
23 24		
25		
26		
27 28		
29		
30 21		
32		
33		
34 25		
35 36		
37		
38		
39 40		
41		
42		
43 44		
45		
46 47		
47		
49		
50 51		
52		
53		
54 55		
56		
57		
58 50		
59 60		

Figure1 Seasonal variations in monthly precipitation [a, b] and mean monthly air temperature [c, d].

http://mc.manuscriptcentral.com/sspn

Figure 2 Seasonal variations in CO_2 [a], N_2O [b], and NO [c] fluxes in 2000, 2002, and 2003. Arrows indicate the timing of plowing.

http://mc.manuscriptcentral.com/sspn

Figure 3 Seasonal variations in CO_2 [a], N_2O [b], and NO [c] fluxes from 2004 to 2007. Arrows indicate the timing of plowing.

Figure 4 Seasonal variations in soil temperature [a & f], WFPS [b & g], soil NH_4^+-N [c, h & J], NO_3^--N [d & i], and WSOC [e & j] concentrations.

Figure 5 Relationships between CO_2 or N_2O fluxes and WFPS.

Figure 6 Relationship between N_2O flux and N_2O -N:NO-N ratio.

Figure 7 Relationship between CO_2 emission and annual precipitation.

Figure 8 Relationship between slope of the monthly CO_2 emission against mean monthly temperature and precipitation from April to October.

		Soil te	mperature §	V	VFPS	NH ₄ +-	N (H ₂ O)	NH_4^+ -	N (KCI)	N	O ₃ ⁻-N	W	SOC	CC) ₂ flux
	Year		$^{\circ}\!\mathrm{C}$		%	mg	N kg⁻¹	mg	N kg⁻¹	mg	N kg⁻¹	mg	C kg⁻¹	mg C	℃ m ⁻² h ⁻¹
		n	R	п	R	п	R	п	R	п	R	п	R	n	R
	2000	19	0.54*	19	-0.17	19	-0.25	ND	ND	19	0.56*	ND	ND	-	-
	2002	51	0.37*	43	0.09	33	-0.47**	ND	ND	33	0.08	33	0.06	-	-
CO flux	2003	34	0.68**	30	-0.51**	13	0.56*	ND	ND	13	0.66*	13	-0.27	-	-
$(ma C m^2 h^{-1})$	2004	26	0.68**	24	-0.34	18	-0.35	ND	ND	18	0.71**	18	-0.08	-	-
	2005	24	0.35	24	0.09	24	-0.37	ND	ND	24	0.33	22	0.37	-	-
	2006	27	0.31	29	0.22	29	-0.05	29	0.15	28	0.10	29	0.13	-	-
	2007	25	0.13	21	-0.11	ND	ND	21	-0.22	22	0.12	22	-0.60*	-	-
	2000	22	0.54**	19	-0.19	22	-0.23	ND	ND	22	0.68**	ND	ND	23	0.59**
	2002	51	0.26	43	-0.11	33	-0.30	ND	ND	33	0.04	33	0.08	60	0.74*
	2003	34	0.25	30	-0.42*	13	0.52	ND	ND	13	0.36	13	-0.34	39	0.51*
$N_2 \cup \Pi U X$	2004	26	0.50**	24	-0.32	18	-0.36	ND	ND	18	0.78**	18	0.03	29	0.71*
(mg in m ² h ⁻¹)	2005	24	0.19	24	0.28	24	-0.28	ND	ND	24	0.14	22	0.49*	28	0.79*
	2006	28	0.21	29	0.09	29	-0.01	29	0.10	28	0.23	29	-0.10	32	0.55*
	2007	24	-0.11	21	0.23	ND	ND	21	-0.20	22	-0.37	22	-0.37	25	0.27

P* < 0.05, *P* < 0.01

1
2
3
4
5
6
7
י פ
0
9 10
10
10
12
13
14
10
10
1/
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table 2 Annual CO ₂ and N ₂ (O emissions from unfertilized bare	soil in an onion field in Mikasa
---	------------------------------------	----------------------------------

Year	Annual precipitation	Mean annual air temperature	Period	CO ₂ emission	Unvcer- tainty	Q ₁₀	N ₂ O emission	Unvcer- tainty
	mm yr⁻¹	C°	day	Mg C ha⁻¹ yr⁻¹	%		kg N ha ⁻¹ yr ⁻¹	%
2000	1576	7.7	302	3.32 a	14.2	2.38	4.60 bc	18.8
2002	1187	7.7	251	2.42 abc	16.9	2.03	3.94 bc	23.6
2003	986	7.4	318	2.04 c	20.7	1.80	2.01 c	74.0
2004	1294	8.4	280	2.48 bc	13.2	1.73	7.34 b	15.0
2005	1398	7.5	297	2.95 ab	21.2	1.53	12.1 a	19.0
2006	1124	7.8	271	2.25 bc	22.8	1.38	1.62 c	106
2007	1015	8.2	256	2.20 bc	58.9	1.11	2.56 c	153
Average	1226	7.81	282	2.53	24.0	1.71	4.88	58.5

Values within the same column differs significantly (P < 0.05)