

Comparison of Nitrogen Budgets in Agricultural Watersheds

著者	KIMURA Sonoko D., YAN Xiaoyuan, HATANO Ryusuke, HAYAKAWA Atsushi, KOHYAMA Kazunori, TI Chaopu, DENG Meihua
journal or	Journal of Integrated Field Science
publication title	
volume	9
page range	107-107
year	2012-03
URL	http://hdl.handle.net/10097/54460

Comparison of Nitrogen Budgets in Agricultural Watersheds

Sonoko D. KIMURA^{1 *2}, Xiaoyuan YAN², Ryusuke HATANO³, Atsushi HAYAKAWA⁴, Kazunori KOHYAMA⁵, Chaopu TI², Meihua DENG¹, Masayuki HOJITO⁶, Sunao ITAHASHI⁵, Kanta KURAMOCHI³, Zucong CAI² and Masanori SAITO⁷

¹Tokyo University of Agriculture and Technology, Tokyo (Japan) ²Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 (China) ³Hokkaido University, Sapporo (Japan) ⁴Akita Prefectural University, Akita (Japan) ⁵National Institute for Agro-Environmental Sciences, Tsukuba (Japan) ⁶National Institute of Livestock and Grassland Science, Nasushiohara (Japan) ⁷Tohoku University, Osaki (Japan)

To analyze the effect of agricultural activity on nitrogen (N) budget at watershed scale, a watershed-scale analysis was conducted at two Japanese and one Chinese watersheds. The study sites are the Shibetsu River watershed (SRW) and Upper-Naka River watershed (UNRW) in Japan, and the Jurong Reservoir watershed (JRW) in China. The total area and the proportion of agricultural area (in brackets) of the watershed was 685 km² (51%), 1299 km² (21%) and 46 km² (55%) for SRW, UNRW and JRW, respectively. The main agricultural land use in SRW was forage grass, while paddy rice fields occupied the highest proportion in UNRW and JRW with values of 11% and 31% of total land area, respectively. The farmland surplus N was 61, 48 and 205 kg N ha-1 yr-1 for SRW, UNRW and JRW, respectively. The proportion of discharged N to net anthropogenic N inputs was 31%, 37% and 1.7% for SRW, UNRW and JRW, respectively. The two watersheds in Japan showed similar relation to the previous reports, while the JRW showed a totally different characteristic compared to the proceeding studies. The high proportion of paddy rice fields and the water bodies in the land-scape was an underestimated N sink in this area.

Spatio-temporal variation of riverine N and P concentration in the Lake Hachiro watershed

A. HAYAKAWA, N. KATANO, Y. ISHIKAWA and S. HIDAKA

Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University

Water quality in the Lake Hachiro is degraded as a result of nutrient pollution such as N and P, which can cause harmful algal bloom during summer. The relative availability of N and P in an lake water determines which nutrient is more limiting: P tends to be limiting for algal bloom when the N:P is over the Redfield ratio of 16:1 (moler). The balance of N and P delivering from rivers to the lake, therefore, can control algal bloom. This study evaluated a spatio-temporal variation of riverine N and P concentration in the Lake Hachiro watershed. River water sampling was conducted at 28 points in the BBM river catchment and at 20 points in the MTN river catchment once a month in 2008. Lake water sampling was also conducted once at 45 points in August 2010 (Hayakawa et al., 2011). The temporal variation of riverine DIN and DIP concentrations showed a reverse trend. During summer, NO_3 -N concentration decreased while PO_4 -P concentration increased, resulting the decrease of DIN: