552 research outputs found
Heating of Micro-protrusions in Accelerating Structures
The thermal and field emission of electrons from protrusions on metal
surfaces is a possible limiting factor on the performance and operation of
high-gradient room temperature accelerator structures. We present here the
results of extensive numerical simulations of electrical and thermal behavior
of protrusions. We unify the thermal and field emission in the same numerical
framework, describe bounds for the emission current and geometric enhancement,
then we calculate the Nottingham and Joule heating terms and solve the heat
equation to characterize the thermal evolution of emitters under RF electric
field. Our findings suggest that, heating is entirely due to the Nottingham
effect, that thermal runaway scenarios are not likely, and that high RF
frequency causes smaller swings in temperature and cooler tips. We build a
phenomenological model to account for the effect of space charge and show that
space charge eliminates the possibility of tip melting, although near melting
temperatures reached.Comment: 8 pages, 10 figure
Fusion using time-dependent density-constrained DFT
We present results for calculating fusion cross-sections using a new
microscopic approach based on a time-dependent density-constrained DFT
calculations. The theory is implemented by using densities and other
information obtained from TDDFT time-evolution of the nuclear system as
constraint on the density for DFT calculations.Comment: 4 Pages, 6 Figures Proceedings of INPC 2013, to be published in EPJ
Web of Conference
Assessment of Cell Toxicity and Oxidation Catalytic Activity of Nanosized Zinc-doped Ceria UV Filter
The abundance of cerium in natural resources, its ability to absorb UV light while being transparent to visible light, as well as low photocatalytic activity make ceria (CeO2) a promising candidate for UV filter material in sunscreens. Doping with different elements can further decrease ceria catalytic and photocatalytic activity, thus preventing the degradation of other sunscreen ingredients. In this work, pure and zinc-doped ceria nanoparticles were prepared by a simple and environmentally benign hydrothermal synthesis, and characterized using various techniques. Fine ceria and doped ceria nanoparticles with particle sizes of 6.1±0.9 and 4.2±0.4 nm were prepared. In both samples, cubic ceria was the only crystalline phase, but the homogeneous distribution of zinc in the doped sample was confirmed by energy dispersive X-ray spectrometry. Nanoparticles exhibited transparency in the visible region and absorbance in the UV region with band gap of 3.23 to 3.14 eV for pure and doped sample, respectively. The oxidation stability time, determined through Castor oil oxidation process, was 23 hours for the pure and 15 hours for the doped sample, which is quite satisfactory. In vitro cytotoxicity study showed
that the prepared nanoparticles were well tolerated by human skin keratinocytes (HaCaT cell line) with no significant differences in skin cells viability. However, further investigations on in vivo systems are necessary to reach a firm conclusion regarding the toxicity of ceria and doped ceria nanoparticles, and other potential dopants should be considered for improvement of ceria properties for sunscreen application.
This work is licensed under a Creative Commons Attribution 4.0 International License
TĂŒrk toplumunda gözlenen ilk hemoglobin g-waimanalo ve hemoglobin fontainebleau olguları]
[No abstract available
Senior Leonard Hayes Wins National Piano Competition
Lawrence Universityâs Leonard Hayes, a senior from Dallas, Texas, won the recent Young Artistsâ Division of the 2011 Tourgee Debose National Piano Competition conducted at Southern University in Baton Rouge, La.
This was Hayesâ second first-place showing in the competition having previously won the Tourgee Deboseâs sophomore division in 2009.
Hayes received a first-place prize of $1,000 for his winning performance of Beethovenâs âPiano Sonata Op. 90,â Cesar Franckâs âPoco Allegro and Fugueâ and two movements from George Walkerâs âPiano Sonata No. 2.â
A third-place finisher in the 2010 National Association of Negro Musiciansâ Piano Scholarship competition, Hayes studies in the piano studio of Catherine Kautsky
Dynamic Microscopic Theory of Fusion Using DC-TDHF
The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a
fully microscopic approach for calculating heavy-ion interaction potentials and
fusion cross sections below and above the fusion barrier. We discuss recent
applications of DC-TDHF method to fusion of light and heavy systems.Comment: Proceedings for the talk presented by A.S. Umar at the Nuclear
Structure and Dynamics II, Opatija, Croatia, July 9-13, 201
PTPN22 gene polymorphism in Takayasu's arteritis
Objective. Takayasu's arteritis (TA) is a chronic, rare granulomatous panarteritis of unknown aetiology involving mainly the aorta and its major branches. In this study, genetic susceptibility to TA has been investigated by screening the functional single nucleotide polymorphism (SNP) of PTPN22 gene encoding the lymphoid-specific protein tyrosine phosphatase. Methods. Totally, 181 patients with TA and 177 healthy controls are genotyped by PCR-RFLP method for the SNP rs2476601 (A/G) of PTPN22 gene. Polymorphic region was amplified by PCR and digested with Xcm I enzyme. Results. Detected frequencies of heterozygous genotype (AG) were 5.1% (9/177) in control group and 3.8% (7/181) in TA group (P = 0.61, odds ratio: 0.75, 95% CI: 0.3, 2.0). No association with angiographic type, vascular involvement or prognosis of TA was observed either. Conclusion. The distribution of PTPN22 polymorphism did not reveal any association with TA in Turkey. © The Author 2008. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved
A panel of oxidative stress assays does not provide supplementary diagnostic information in Behcet's disease patients
Published onlineJournal ArticleBACKGROUND: Recent findings suggest a role of oxidative stress in the pathogenesis of Behcet's disease (BD), but the utility of oxidative stress-associated assays in offering diagnostic information or in the monitoring of disease activity is largely unassessed. OBJECTIVE AND METHODS: We aimed to measure oxidative and inflammatory markers, along with the markers of reactive nitrogen species, S-nitrosothiols and 3-nitrotyrosine, in BD patients (n = 100) and healthy volunteers (n = 50). These markers were evaluated in regard to their role in the pathogenesis of BD as well as their relation to clinical presentation, disease activity and duration. RESULTS: Median values for erythrocyte sedimentation rate (ESR), C-reactive protein, leukocyte count, and IL-18 levels, as well as myeloperoxidase (MPO) activity, were statistically higher in the patient group compared to controls. Some inflammation markers (ESR, neutrophil and leukocyte counts) were statistically higher (p 0.05 in all statistical comparisons), nor was there any difference in median levels of these oxidative stress markers in active disease versus disease remission. S-nitrosothiols and 3-nitrotyrosine were undetectable in BD plasma. CONCLUSIONS: The application of oxidative stress-associated measures to BD blood samples offered no supplemental diagnostic or disease activity information to that provided by standard laboratory measures of inflammation. S-nitrosothiols and 3-nitrotyrosine appeared not to be markers for active BD; thus the search for biochemical markers that will indicate the active period should be continued with larger studies
Budget Processes: Theory and Experimental Evidence
This paper studies budget processes, both theoretically and experimentally. We compare the outcomes of bottom-up and top-down budget processes. It is often presumed that a top-down budget process leads to a smaller overall budget than a bottom-up budget process. Ferejohn and Krehbiel (1987) showed theoretically that this need not be the case. We test experimentally the theoretical predictions of their work. The evidence from these experiments lends strong support to their theory, both at the aggregate and the individual subject level
The UN in the lab
We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3Ă3 âNested Prisonerâs Dilemmaâ game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisonerâs Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy
- âŠ