research

Heating of Micro-protrusions in Accelerating Structures

Abstract

The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting factor on the performance and operation of high-gradient room temperature accelerator structures. We present here the results of extensive numerical simulations of electrical and thermal behavior of protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating terms and solve the heat equation to characterize the thermal evolution of emitters under RF electric field. Our findings suggest that, heating is entirely due to the Nottingham effect, that thermal runaway scenarios are not likely, and that high RF frequency causes smaller swings in temperature and cooler tips. We build a phenomenological model to account for the effect of space charge and show that space charge eliminates the possibility of tip melting, although near melting temperatures reached.Comment: 8 pages, 10 figure

    Similar works

    Full text

    thumbnail-image