1,030 research outputs found

    sscMap: An extensible Java application for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Background: Connectivity mapping is a process to recognize novel pharmacological and toxicological properties in small molecules by comparing their gene expression signatures with others in a database. A simple and robust method for connectivity mapping with increased specificity and sensitivity was recently developed, and its utility demonstrated using experimentally derived gene signatures. Results: This paper introduces sscMap (statistically significant connections' map), a Java application designed to undertake connectivity mapping tasks using the recently published method. The software is bundled with a default collection of reference gene-expression profiles based on the publicly available dataset from the Broad Institute Connectivity Map 02, which includes data from over 7000 Affymetrix microarrays, for over 1000 small-molecule compounds, and 6100 treatment instances in 5 human cell lines. In addition, the application allows users to add their custom collections of reference profiles and is applicable to a wide range of other 'omics technologies. Conclusions: The utility of sscMap is two fold. First, it serves to make statistically significant connections between a user-supplied gene signature and the 6100 core reference profiles based on the Broad Institute expanded dataset. Second, it allows users to apply the same improved method to custom-built reference profiles which can be added to the database for future referencing. The software can be freely downloaded from http://purl.oclc.org/NET/sscMapComment: 3 pages, 1 table, 1 eps figur

    A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties. The Connectivity Map was a novel concept and innovative tool first introduced by Lamb et al to connect small molecules, genes, and diseases using genomic signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the Connectivity Map had some limitations, particularly there was no effective safeguard against false connections if the observed connections were considered on an individual-by-individual basis. Further when several connections to the same small-molecule compound were viewed as a set, the implicit null hypothesis tested was not the most relevant one for the discovery of real connections. Here we propose a simple and robust method for constructing the reference gene-expression profiles and a new connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with the two example gene-signatures (HDAC inhibitors and Estrogens) used by Lamb et al and also a new gene signature of immunosuppressive drugs. Our testing with this new method shows that it achieves a higher level of specificity and sensitivity than the original method. For example, our method successfully identified raloxifene and tamoxifen as having significant anti-estrogen effects, while Lamb et al's Connectivity Map failed to identify these. With these properties our new method has potential use in drug development for the recognition of pharmacological and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a ZIP fil

    Training Auto-encoder-based Optimizers for Terahertz Image Reconstruction

    Full text link
    Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimization without the network-based initialization.Comment: This is a pre-print of a conference paper published in German Conference on Pattern Recognition (GCPR) 201

    The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z=0.27

    Get PDF
    We present ZTF18abvkwla (the "Koala"), a fast blue optical transient discovered in the Zwicky Transient Facility (ZTF) One-Day Cadence (1DC) Survey. ZTF18abvkwla has a number of features in common with the groundbreaking transient AT 2018cow: blue colors at peak (g−r≈−0.5g-r\approx -0.5 mag), a short rise time from half-max of under two days, a decay time to half-max of only three days, a high optical luminosity (Mg,peak≈−20.6{M}_{g,\mathrm{peak}}\approx -20.6 mag), a hot (gsim40,000 K) featureless spectrum at peak light, and a luminous radio counterpart. At late times (Δt>80 days{\rm{\Delta }}t\gt 80\,\mathrm{days}), the radio luminosity of ZTF18abvkwla (νLν≳1040 erg s−1\nu {L}_{\nu }\gtrsim {10}^{40}\,\mathrm{erg}\,{{\rm{s}}}^{-1} at 10 GHz\mathrm{GHz}, observer-frame) is most similar to that of long-duration gamma-ray bursts (GRBs). The host galaxy is a dwarf starburst galaxy (M≈5×108 M⊙M\approx 5\times {10}^{8}\,{M}_{\odot }, SFR≈7 M⊙ yr−1\mathrm{SFR}\approx 7\,{M}_{\odot }\,{\mathrm{yr}}^{-1}) that is moderately metal-enriched (log[O/H]≈8.5\mathrm{log}[{\rm{O}}/{\rm{H}}]\approx 8.5), similar to the hosts of GRBs and superluminous supernovae. As in AT2018cow, the radio and optical emission in ZTF18abvkwla likely arise from two separate components: the radio from fast-moving ejecta (Γβc>0.38c{\rm{\Gamma }}\beta c\gt 0.38c) and the optical from shock-interaction with confined dense material (<0.07 M ⊙ in ∼1015 cm\sim {10}^{15}\,\mathrm{cm}). Compiling transients in the literature with trise<5 days{t}_{\mathrm{rise}}\lt 5\,\mathrm{days} and Mpeak<−20{M}_{\mathrm{peak}}\lt -20 mag, we find that a significant number are engine-powered, and suggest that the high peak optical luminosity is directly related to the presence of this engine. From 18 months of the 1DC survey, we find that transients in this rise-luminosity phase space are at least two to three orders of magnitude less common than CC SNe. Finally, we discuss strategies for identifying such events with future facilities like the Large Synoptic Survey Telescope, as well as prospects for detecting accompanying X-ray and radio emission

    EBV-Encoded LMP1 Upregulates Igκ 3′Enhancer Activity and Igκ Expression in Nasopharyngeal Cancer Cells by Activating the Ets-1 through ERKs Signaling

    Get PDF
    Accumulating evidence indicates that epithelial cancer cells, including nasopharyngeal carcinoma (NPC) cells, express immunoglobulins (Igs). We previously found that the expression of the kappa light chain protein in NPC cells can be upregulated by the EBV-encoded latent membrane protein 1 (LMP1). In the present study, we used NPC cell lines as models and found that LMP1-augmented kappa production corresponds with elevations in ERKs phosphorylation. PD98059 attenuates LMP1-induced ERKs phosphorylation resulting in decreased expression of the kappa light chain. ERK-specific small interfering RNA blunts LMP1-induced kappa light chain gene expression. Luciferase reporter assays demonstrate that immunoglobulin κ 3′ enhancer (3′Eκ) is active in Igκ-expressing NPC cells and LMP1 upregulates the activity of 3′Eκ in NPC cells. Moreover, mutation analysis of the PU binding site in 3′Eκ and inhibition of the MEK/ERKs pathway by PD98059 indicate that the PU site is functional and LMP1-enhanced 3′Eκ activity is partly regulated by this site. PD98059 treatment also leads to a concentration-dependent inhibition of LMP1-induced Ets-1 expression and phosphorylation, which corresponds with a dose-dependent attenuation of LMP1-induced ERK phosphorylation and kappa light chain expression. Suppression of endogenous Ets-1 by small interfering RNA is accompanied by a decrease of Ig kappa light chain expression. Gel shift assays using nuclear extracts of NPC cells indicate that the transcription factor Ets-1 is recruited by LMP1 to the PU motif within 3′Eκ in vitro. ChIP assays further demonstrate Ets-1 binding to the PU motif of 3′Eκ in cells. These results suggest that LMP1 upregulates 3′Eκ activity and kappa gene expression by activating the Ets-1 transcription factor through the ERKs signaling pathway. Our studies provide evidence for a novel regulatory mechanism of kappa expression, by which virus-encoded proteins activate the kappa 3′ enhancer through activating transcription factors in non-B epithelial cancer cells

    The reactive metabolite target protein database (TPDB) – a web-accessible resource

    Get PDF
    BACKGROUND: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. DESCRIPTION: The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. CONCLUSION: The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available a

    Structural basis of outer membrane protein insertion by the BAM complex

    Get PDF
    All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB–BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP
    • …
    corecore