3,497 research outputs found

    A cluster mode-coupling approach to weak gelation in attractive colloids

    Full text link
    Mode-coupling theory (MCT) predicts arrest of colloids in terms of their volume fraction, and the range and depth of the interparticle attraction. We discuss how effective values of these parameters evolve under cluster aggregation. We argue that weak gelation in colloids can be idealized as a two-stage ergodicity breaking: first at short scales (approximated by the bare MCT) and then at larger scales (governed by MCT applied to clusters). The competition between arrest and phase separation is considered in relation to recent experiments. We predict a long-lived `semi-ergodic' phase of mobile clusters, showing logarithmic relaxation close to the gel line.Comment: 4 pages, 3 figure

    Crystallization Mechanism of Hard Sphere Glasses

    Get PDF
    In supercooled liquids, vitrification generally suppresses crystallization. Yet some glasses can still crystallize despite the arrest of diffusive motion. This ill-understood process may limit the stability of glasses, but its microscopic mechanism is not yet known. Here we present extensive computer simulations addressing the crystallization of monodisperse hard-sphere glasses at constant volume (as in a colloid experiment). Multiple crystalline patches appear without particles having to diffuse more than one diameter. As these patches grow, the mobility in neighbouring areas is enhanced, creating dynamic heterogeneity with positive feedback. The future crystallization pattern cannot be predicted from the coordinates alone: crystallization proceeds by a sequence of stochastic micro-nucleation events, correlated in space by emergent dynamic heterogeneity.Comment: 4 pages 4 figures Accepted for publication in Phys. Rev. Lett., April 201

    Glasses in hard spheres with short-range attraction

    Full text link
    We report a detailed experimental study of the structure and dynamics of glassy states in hard spheres with short-range attraction. The system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear polymer which induces a depletion attraction between the particles. Observation of crystallization reveals a re-entrant glass transition. Static light scattering shows a continuous change in the static structure factors upon increasing attraction. Dynamic light scattering results, which cover 11 orders of magnitude in time, are consistent with the existence of two distinct kinds of glasses, those dominated by inter-particle repulsion and caging, and those dominated by attraction. Samples close to the `A3 point' predicted by mode coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure

    Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures

    Full text link
    By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the onset of non-equilibrium behaviour in colloid-polymer mixtures. These mixtures can function as models of atomic systems; their physics therefore impinges on many areas of thermodynamics and phase-ordering. An exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high density from a supersaturated low density phase, whose diffusive depletion drives the interfacial motion. In addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-density phase, above which the two interfaces become unbound and the metastable phase grows ad infinitum. The growth of the stable phase is suppressed in this regime.Comment: 27 pages, Latex, eps

    Scaling of dynamics with the range of interaction in short-range attractive colloids

    Full text link
    We numerically study the dependence of the dynamics on the range of interaction Δ\Delta for the short-range square well potential. We find that, for small Δ\Delta, dynamics scale exactly in the same way as thermodynamics, both for Newtonian and Brownian microscopic dynamics. For interaction ranges from a few percent down to the Baxter limit, the relative location of the attractive glass line and the liquid-gas line does not depend on Δ\Delta. This proves that in this class of potentials, disordered arrested states (gels) can be generated only as a result of a kinetically arrested phase separation.Comment: 4 pages, 4 figure

    β\beta-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment

    Get PDF
    The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to determine the effective electron neutrino mass m(νe)m(\nu_\text{e}) with an unprecedented sensitivity of 0.2 eV0.2\,\text{eV} (90\% C.L.) by precision electron spectroscopy close to the endpoint of the β\beta decay of tritium. We present a consistent theoretical description of the β\beta electron energy spectrum in the endpoint region, an accurate model of the apparatus response function, and the statistical approaches suited to interpret and analyze tritium β\beta decay data observed with KATRIN with the envisaged precision. In addition to providing detailed analytical expressions for all formulae used in the presented model framework with the necessary detail of derivation, we discuss and quantify the impact of theoretical and experimental corrections on the measured m(νe)m(\nu_\text{e}). Finally, we outline the statistical methods for parameter inference and the construction of confidence intervals that are appropriate for a neutrino mass measurement with KATRIN. In this context, we briefly discuss the choice of the β\beta energy analysis interval and the distribution of measuring time within that range.Comment: 27 pages, 22 figures, 2 table

    Multicore fibers with 10 and 16 single-mode cores for the visible spectrum

    Get PDF
    We report multicore fibers (MCFs) with 10 and 16 linearly distributed cores with single-mode operation in the visible spectrum. The average propagation loss of the cores is 0.06 dB/m at λ = 445 nm and < 0.03 dB/m at wavelengths longer than 488 nm. The low inter-core crosstalk and nearly identical performance of the cores make these MCFs suitable for spatial division multiplexing in the visible spectrum. As a proof-of-concept application, one of the MCFs was coupled to an implantable neural probe to spatially address light-emitting gratings on the probe

    Comparative simulation study of colloidal gels and glasses

    Full text link
    Using computer simulations, we identify the mechanisms causing aggregation and structural arrest of colloidal suspensions interacting with a short-ranged attraction at moderate and high densities. Two different non-ergodicity transitions are observed. As the density is increased, a glass transition takes place, driven by excluded volume effects. In contrast, at moderate densities, gelation is approached as the strength of the attraction increases. At high density and interaction strength, both transitions merge, and a logarithmic decay in the correlation function is observed. All of these features are correctly predicted by mode coupling theory

    Colloidal gels under shear: Strain rate effects

    Get PDF
    Attractive colloidal particles are trapped in metastable states such as colloidal gels at high attraction strengths and attractive glasses and high volume fractions. Under shear such states flow via a two step yielding process that relates to bond and cluster or cage breaking. We discuss the way the structural properties and related stress response are affected by the shear rate. At low rates colloidal gels yield during start-up shear essentially in a single step, exhibiting a single stress overshoot due to creation of compact flowing clusters. With increasing shear rate a second stress overshoot, linked with further cluster breaking up to individual particles, is becoming more pronounced. We further present the age dependence of the two step yielding and wall slip effects often taking place during rheological experiments of colloidal gels. The latter is related both with the shear rate dependent gel structure as well as the time evolution of the near wall structure

    Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11.

    Get PDF
    Abstract UDP-N-acetyl-l-fucosamine is a precursor to l-fucosamine in the lipopolysaccharide of Pseudomonas aeruginosa serotype O11 and the capsule of Staphylococcus aureus type 5. We have demonstrated previously the involvement of three enzymes, WbjB, WbjC, and WbjD, in the biosynthesis of UDP-2-acetamido-2,6-dideoxy-l-galactose or UDP-N-acetyl-l-fucosamine (UDP-l-FucNAc). An intermediate compound from the coupled-reaction of WbjB-WbjC with the initial substrate UDP-2-acetamido-2-deoxy-α-d-glucose or UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) was purified, and the structure was determined by NMR spectroscopy to be UDP-2-acetamido-2,6-dideoxy-l-talose (UDP-l-PneNAc). WbjD could then convert this intermediate into a new product with the same mass, consistent with a C-2 epimerization reaction. Those results led us to propose a pathway for the biosynthesis of UDP-l-FucNAc; however, the exact enzymatic activity of each of these proteins has not been defined. Here, we describe a fast protein liquid chromatography (FPLC)-based anion-exchange procedure, which allowed the separation and purification of the products of C-2 epimerization due to WbjD. Also, the application of a cryogenically cooled probe in NMR spectrometry offers the greatest sensitivity for determining the structures of minute quantities of materials, allowing the identification of the final product of the pathway. Our results showed that WbjB is bifunctional, catalyzing firstly C-4, C-6 dehydration and secondly C-5 epimerization in the reaction with the substrate UDP-d-GlcNAc, producing two intermediates. WbjC is also bifunctional, catalyzing C-3 epimerization of the second intermediate followed by reduction at C-4. The FPLC-based procedure provided good resolution of the final product of WbjD reaction from its epimer/substrate UDP-l-PneNAc, and the use of the cryogenically cooled probe in NMR revealed unequivocally that the final product is UDP-l-FucNAc
    • …
    corecore