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FIG. 1. Slab in the xy plane showing the 5% most mo-
bile particles (in red) and the crystalline particles (in light
blue) at time t = 0 (A), t = 320 (B), t = 640 (C) and
t = 1280 (D). Mobile particles are ranked by the distance
they move between the time of the frame at which they are
shown and the subsequent frame. They are spatially cor-
related with crystalline ones and have a higher tendency
to become crystalline than “average” amorphous particles.

In supercooled liquids, vitrification generally sup-
presses crystallization [1]. Yet some glasses can still
crystallize despite the arrest of diffusive motion [2].
This ill-understood process may limit the stability of
glasses, but its microscopic mechanism has not been
probed yet. Here we present extensive computer simu-
lations addressing the crystallization of monodisperse
hard-sphere glasses at constant volume (as in a col-
loid experiment). Multiple crystalline patches appear
without particles having to diffuse more than one di-
ameter. As these patches grow, the mobility in neigh-
bouring areas is enhanced, creating dynamic hetero-
geneity with positive feedback. The future crystal-
lization pattern cannot be predicted from the parti-
cle coordinates alone: crystallization proceeds by a
sequence of stochastic micro-nucleation events, corre-
lated in space by emergent dynamic heterogeneity.

Figure 2 shows the evolution of an initial state with
periodic density pattern, following two different tra-

jectories (white arrows) from identical initial particle
coordinates, but with different initial velocity choices
(drawn at random from the thermal distribution).
The black arrow shows a run where velocities are ran-
domized after X reaches 0.05. The subsequent evo-
lution is again altered, even though significant crys-
tallinity was already present. At no stage do we find
the future evolution to depend reproducibly on coor-
dinates alone, although crystallites are more likely to
form in regions of high Q6 than elsewhere. The crys-
tallization mechanism thus comprises a sequence of
stochastic ‘micro-nucleation’ events.
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FIG. 2. Slab of the system for various values of the
evolving crystallinity X. Particles are coloured accord-
ing to the degree of crystalline order in their neighbour-
hood (blue, 0 < Q6 < 0.15; green 0.15 < Q6 < 0.25;
yellow 0.25 < Q6 < 0.35; orange 0.35 < Q6 < 0.45; red
0.45 < Q6 < 0.55). The initial state (left) has a periodic
density pattern that is quickly forgotten.
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