3,306 research outputs found

    AMPTE/CCEā€SCATHA simultaneous observations of substormā€associated magnetic fluctuations

    Get PDF
    This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event

    QoS Multicast Routing with Heterogeneous Receivers

    Get PDF
    When supporting source-specific heterogeneous-receiver multimedia applications, a multicast tree is built among a source and the receivers such that the path from the source to each receiver satisfies the delay and bandwidth constraints. To optimize the network usage, it is desirable to find a multicast tree that minimizes the total bandwidth used while satisfying the different delay and bandwidth requirements of the receivers. For scalability reason, the desired protocol should require little or minimum storage in the sender and other on-tree routers. Moreover, to allow dynamic member join or leave, a receiver-initiated approach is more appropriate. In this paper, we describe our receiver-initiated QoS multicast protocol that aims at reducing the bandwidth used in building a multicast tree for heterogeneous receivers by actively identifying better sub-optimal paths. Our protocol does not require additional information to be stored in the on-tree routers, and it is able to construct a better sub-optimal tree than existing protocols.published_or_final_versio

    Bandwidth sensitive routing in diffServ networks with heterogeneous bandwidth requirements

    Get PDF
    This paper studies the problem of finding optimal routes for premium class traffic in a DiffServ network such that (1) loop-freedom is guaranteed in the entire network under hop-by-hop routing assumption; and (2) the maximum relative congestion among all links is minimized. This problem is called the Extended Optimal Premium Routing (eOPR) problem, which is proven to be NP-hard. We use the integer programming method to mathematically formulate the eOPR problem and find the optimal solutions for small scale networks. We also study heuristic algorithms in order to handle large scale networks. Simulation results are compared with the optimal solutions obtained by solving the integer programming models. The results show that the Bandwidth-inversion Shortest Path (BSP) algorithm can be a good candidate to route premium traffic in DiffServ networks.published_or_final_versio

    Wikiglass: a learning analytic tool for visualizing collaborative wikis of secondary school students

    Get PDF
    Poster SessionThis demo presents Wikiglass, a learning analytic tool for visualizing the statistics and timelines of collaborative Wikis built by secondary school students during their group project in inquiry-based learning. The tool adopts a modular structure for the flexibility of reuse with different data sources. The client side is built with the Model-View-Controller framework and the AngularJS library whereas the server side manages the database and data sources. The tool is currently used by secondary teachers in Hong Kong and is undergoing evaluation and improvement.published_or_final_versio

    A framework for understanding the factors influencing pair programming success

    Get PDF
    Pair programming is one of the more controversial aspects of several Agile system development methods, in particular eXtreme Programming (XP). Various studies have assessed factors that either drive the success or suggest advantages (and disadvantages) of pair programming. In this exploratory study the literature on pair programming is examined and factors distilled. These factors are then compared and contrasted with those discovered in our recent Delphi study of pair programming. Gallis et al. (2003) have proposed an initial framework aimed at providing a comprehensive identification of the major factors impacting team programming situations including pair programming. However, this study demonstrates that the framework should be extended to include an additional category of factors that relate to organizational matters. These factors will be further refined, and used to develop and empirically evaluate a conceptual model of pair programming (success)

    Probing ultrafast carrier dynamics and nonlinear absorption and refraction in core-shell silicon nanowires

    Full text link
    We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at photon energies of 3.15 eV and 1.57 eV. The complex behavior of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photo-generated carrier density. Independent experimental results on crystalline silicon-on-sapphire help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single beam z-scan nonlinear transmission experiments at 1.57 eV in both open and close aperture configurations yield two-photon absorption coefficient \betabeta (~3 cm/GW) and nonlinear refraction coefficient \gammagamma (-2.5x10^-4 cm2/GW).Comment: 6 pages, 6 figure

    Effect of next-nearest neighbor coupling on the optical spectra in bilayer graphene

    Full text link
    We investigate the dependence of the optical conductivity of bilayer graphene (BLG) on the intra- and inter-layer interactions using the most complete model to date. We show that the next nearest-neighbor intralayer coupling introduces new features in the low-energy spectrum that are highly sensitive to sample doping, changing significantly the ``universal'' conductance. Further, its interplay with interlayer couplings leads to an anisotropy in conductance in the ultraviolet range. We propose that experimental measurement of the optical conductivity of intrinsic and doped BLG will provide a good benchmark for the relative importance of intra- and inter-layer couplings at different doping levels.Comment: 5 pages, 5 figure

    Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals

    Get PDF
    Radio frequency (RF) energy harvesting is an emerging technology that has the potential to eliminate the need for batteries and reduce maintenance costs of sensing applications. The antenna is one of the critical components that determines its performance and while antenna design has been well researched for the purpose of communication, the design for RF energy harvesting applications has not been widely addressed. The authors present an optimised design for such an antenna for harvesting energy from medium wave broadcast transmissions. They derive and use a model for computing the optimal antenna configuration given application requirements on output voltage and power, material costs and physical dimensions. Design requirements for powering autonomous smart meters have been considered. The proposed approach was used to obtain the antenna configuration that is able to deliver 1 mW of power to 1 kĪ© load at a distance of up to 9 km, sufficient to replace batteries on low-power sensing applications. Measurements using a prototype device have been used to verify the authors simulations

    Emphasizing responder speed or accuracy modulates but does not abolish the distractor-induced quitting effect in visual search

    Get PDF
    Acknowledgements This research project was initially presented at the 2023 Australasian Experimental Psychology Conference (Lawrence et al., 2023c April 12ā€“14). The authors would like to acknowledge the feedback and insights provided by Professor Allison Waters throughout the conceptualization and execution of this project. Funding This research was supported by a Griffith University New Researcher Grant awarded to RKL.Peer reviewedPublisher PD
    • ā€¦
    corecore