
Title QoS Multicast Routing with Heterogeneous Receivers

Author(s) Lui, KS; Wang, J; Xiao, L; Nahrstedt, K

Citation Conference Record / Ieee Global Telecommunications
Conference, 2003, v. 7, p. 3597-3601

Issued Date 2003

URL http://hdl.handle.net/10722/46420

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

QoS Multicast Routing with Heterogeneous Receivers

King-Shan Lui
Department of Electrical and Electronic Engineering

The University of Hong Kong, Hong Kong

Jun Wang, Li Xiao, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana Champaign, Urbana, IL 61801, USA

Abstract—When supporting source-specific heterogeneous-receiver mul-
timedia applications, a multicast tree is built among a source and the re-
ceivers such that the path from the source to each receiver satisfies the delay
and bandwidth constraints. To optimize the network usage, it is desirable
to find a multicast tree that minimizes the total bandwidth used while satis-
fying the different delay and bandwidth requirements of the receivers. For
scalability reason, the desired protocol should require little or minimum
storage in the sender and other on-tree routers. Moreover, to allow dynamic
member join or leave, a receiver-initiated approach is more appropriate. In
this paper, we describe our receiver-initiated QoS multicast protocol that
aims at reducing the bandwidth used in building a multicast tree for het-
erogeneous receivers by actively identifying better sub-optimal paths. Our
protocol does not require additional information to be stored in the on-tree
routers, and it is able to construct a better sub-optimal tree than existing
protocols.

I. INTRODUCTION

To support source-specific multimedia applications such as video
broadcast and distance learning in a network, a multicast tree that is
rooted at a source and spans over a set of receivers is built. As dif-
ferent receivers may have different processing speeds and local net-
work constraints, they may have different delay and bandwidth require-
ments. This kind of receiver heterogeneity implies that the tree should
be built and link bandwidth should be reserved in a way that the tree
path from the source to each receiver satisfies the delay and bandwidth
constraints of that receiver. To minimize the resource used in the net-
work, a multicast tree should be built using the least amount of total
reserved bandwidth. This problem is NP-complete in nature [1] and a
heuristic approach is used to solve the problem.

Multicast protocols can be categorized into sender-initiated and
receiver-initiated. In a sender-initiated protocol, the sender knows the
set of receivers and initiates the multicast tree construction process. On
the other hand, in the receiver-initiated approach, the sender may not
know every receiver and a receiver sends out a join request when it
wants to join a multicast group. The receiver-initiated approach is more
flexible since it does not require the sender to keep the receiver infor-
mation and allows dynamic member join and leave operations.

In this paper, we describe our novel receiver-initiated QoS multi-
cast protocol to support source-specific multicast with heterogeneous
receivers. There are two phases in our protocol. In the first phase,
the active finding phase, our protocol aims at finding a path, that spans
out from the existing multicast tree, to support the receiver. Any exist-
ing heterogeneous receiver-initiated QoS multicast can be used in this
phase. In the second phase, the active optimization phase, our protocol
actively tries to reduce the total bandwidth used in the tree by finding
another path for the new receiver to join. The second phase does not
require additional information and so the information kept in each on-
tree node is minimal. Since we use a new path for the receiver to join
in the second phase only when we are sure that the new path is more
sub-optimal, the performance of our protocol is no worse than other ex-
isting protocols. Our simulations demonstrate the effectiveness of the
active optimization phase.

This work was supported by grant NSF ANI 00-73802. The opinions and
findings of this paper do not necessarily reflect those of the funding agent.

This paper is organized as follows: we describe the related work and
the model in Sections II and III respectively. Section IV describes the
active optimization phase. We presents our simulation result in Section
VI and conclude in Section VII.

II. RELATED WORK

Heterogeneous receiver multicast has been studied in the application
level and also in the network level. There is a lot of work at the applica-
tion level, which mainly focuses on video multicasting. Examples are
[2], [3], [4].

Our paper studies the QoS multicast problem from the network layer
perspective. That is, we aim at finding a multicast tree that can support
heterogeneous QoS requirements of the receivers. Finding a minimum
cost multicast tree, which is called the Steiner Tree, is NP-complete.
There are many heuristics in finding a sub-optimal Steiner tree [5].
When QoS is considered other than connectivity, the multicast tree con-
struction becomes even more complicated [6].

The research presented in [7], [8] studied how to build multicast trees
for video or multimedia streams. They considered only bandwidth but
not delay constraint in their routing mechanisms. The problem of con-
structing a tree that satisfies both delay and bandwidth requirements of
heterogeneous receivers was considered in [9], [10], [11], [12]. The
approach in [11] is not receiver-initiated. In [9], [10], [12], when a
receiver wants to join a multicast group, it finds a feasible path from
the sender to itself and sends a join message towards the sender along
the reversed path. When an on-tree router receives the join message,
it determines how to setup a path from the sender to itself. Usually, if
the on-tree router realizes that the existing path from the sender to itself
and to the new receiver satisfies the request of the new receiver, the on-
tree router will reply to the receiver that the join request is successful.
In this case, the path from the sender to the on-tree router is used for
multiple receivers so that resource used can be optimized.

Unfortunately, the path found by the receiver may not be the most
optimal path. For example, Figure 1(a) shows a simple network, where
S is the sender and R1 and R2 are two receivers. When R1 uses the
path S → N1 → R1 and R2 uses the path S → N1 → R2 to join
the multicast group respectively, N1 can “merge” the two paths start-
ing from itself to the receivers and the resultant tree is optimal (Figure
1(b)). However, when R1 uses the path S → N1 → R1 and R2 uses
the path S → N2 → R2 to join the multicast group respectively, the
constructed tree will not be optimal since the two paths do not pass
through any common on-tree router and no router can join or optimize
the paths among them.

S

R1 R2

N1 N2

S

R1 R2

N1 N2

S

R1 R2

N1 N2

(a) Whole Network (b) Optimal Tree (c) Inoptimal Tree

Fig. 1. Example

In a receiver-initiated approach, this suboptimal situation may hap-
pen frequently because a new receiver is not aware of the bandwidth

GLOBECOM 2003 - 3597 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

reserved for the multicast group that it is joining. For example, sup-
pose that the capacities of all the links in Figure 1(a) are all 1 unit and
the bandwidth required of each receiver is 0.6 unit. Then, after R1 has
set up the path, the bandwidth available on link (S, N1) becomes 0.4
unit, since 0.6 unit is reserved for the multicast tree. The link state
advertisement will advertise 0.4 as the new bandwidth of (S, N1) be-
cause information of a multicast tree will not be advertised. In this
case, when R2 tries to join the multicast tree, it will not find the path
S → N1 → R2 because R2 thinks that the path does not have suf-
ficient bandwidth. As a result, we would end up having a suboptimal
multicast tree as in Figure 1(c).

Our protocol solves the problem by actively finding a more sub-
optimal path (S → N1 → R2) after a feasible path (S → N2 → R2)
is found based on only local state information in each on-tree router.
Therefore, our protocol does not require additional information to be
kept in on-tree routers but it is able to build a more sub-optimal tree.

III. MODEL

A network is modeled as a digraph G = (V, E), where V is the
set of nodes and E is the set of links among the nodes in V . A link
from node x to y is represented as (x, y). We assume that a link is
two-way, that is, if (x, y) in E, (y, x) also in E. Each link has two
parameters associated with it: delay and bandwidth available. We use
d(x, y) and c(x, y) to represent the delay and the bandwidth of link
(x, y), respectively. A path from node x to node y in G is denoted as
[x, y]. If a link (i, j) is on the path [x, y], we write (i, j) ∈ [x, y].
(i, j) �∈ [x, y] if [x, y] does not pass through (i, j). The delay of [x, y],
denoted as d[x, y], is the sum of the delays of the links along the path.
The capacity of [x, y], denoted as c[x, y], is the minimum bandwidth
of the links along the path. That is, d[x, y] =

∑
(i,j)∈[x,y]

d(i, j) and
c[x, y] = min(i,j)∈[x,y]c(i, j).

A source-specific multicast group M is defined by a unique source
s ∈ V and a set of receivers R ⊂ V , where each receiver r ∈ R has
an end-to-end delay requirement D(r) and a bandwidth requirement
B(r). The problem of multicast routing is to find a tree T = (VT , ET),
where R ⊂ VT ⊆ V and ET ⊆ E, for multicast group M such that
the path provided in T from s to each receiver satisfies the delay and
bandwidth requirement of that receiver. Formally, for each r ∈ R, the
path [s, r] in T must satisfy d[s, r] ≤ D(r) and c[s, r] ≥ B(r).

Sufficient bandwidth must be reserved on T for the multicast. There-
fore, the bandwidth needed to be reserved for M on a link e, denoted
B(e), is the maximum bandwidth requirement among all receivers r
that the link is supporting. Formally, B(e) = max{B(r)|e ∈ [s, r]}.
The cost of multicast tree T is the sum of the bandwidth needed for all
links in ET . That is, B(T) = Σl∈ET B(l). An optimal multicast tree
is a multicast tree T where B(T) is less than or the same as the cost
of other multicast trees for the same multicast group. The problem of
finding an optimal multicast tree has been proved to be NP-complete.

We assume that link-state information is available for every node in
the network. There exists a unicast QoS routing algorithm, such as [13],
in the network to find a feasible path that satisfies certain delay and
bandwidth requirement. Different nodes can execute different unicast
QoS routing algorithms. There is also a reservation protocol that can
reserve bandwidths on a path. However, no node has the knowledge
of the multicast tree structure. A node n that is on a multicast tree
keeps only up-to-date local state information of the multicast group,
which includes (1) the sender of the multicast group (s), (2) its parent
(parent(n)) and its children (A(n)), (3) the bandwidth reserved in the
parent interface, that is, B(parent(n), n), denoted Bparent, and in
each child interface, B(n, a), a ∈ A(n), and (4) the delay from the
sender to n (d[s, n]).

IV. ACTIVE OPTIMIZATION

The reason why [9], [10], [12] cannot find an optimal tree in the case
as shown in Figure 1 is because their mechanisms implicitly assume
that the first on-tree router that receives a join message is the best point
to setup another branch in the tree for the new receiver. An observation
from Figure 1 is that the best point to setup another branch can be a de-
scendant from the first on-tree router that receives a join message. We
derive our protocol by this observation. There are two phases when an
on-tree node handles a join request in our protocol: active finding phase
and active optimization phase. In the active finding phase, an on-tree
node tries to find a feasible path for a receiver to join the tree. Any ex-
isting receiver-initiated QoS multicast routing protocol ([9], [10], [12])
can be used. After a feasible path is found, we intentionally try to op-
timize the tree by finding a more sub-optimal path for the receiver to
join the group in the active optimization phase. In this phase, the on-
tree node checks whether it is more sub-optimal if the receiver joins at
one of its children. If so, it asks that child to see whether it is more
sub-optimal to join at one of the child’s children. The process con-
tinues until we find the lowest level node that is more sub-optimal for
the receiver to join at that node than any of the children of that node.
The information is then sent to the receiver and the receiver can setup
a path to that node accordingly. As this active optimization step is an
additional procedure to existing schemes to optimize a multicast tree,
the tree built by our protocol cannot be worse than the trees built by
existing protocols. Whether the active optimization is useful depends
on how often it can identify more sub-optimal location for a receiver
to join. We use simulation to study how often our protocol can find
a more sub-optimal path and how much our protocol can improve in
terms of bandwidth usage. We also analyze the storage, computation,
and message overheads.

When r wants to join a multicast tree, it finds a path from s to r
and sends a join request on the reverse direction along that path. On
receiving the join request, an off-tree node would reserve bandwidth
for r, if the bandwidth on the link is sufficient. When an on-tree node n
receives the join request, it decides whether to accept the join request or
not in the active finding process. We denote the tree path from s to n as
[s, n] and the the reverse path of the join request traverses from r to n
as [n, r]join as shown in Figure 2. Due to space limitation, we describe
only the active optimization phase in this paper. We refer interested
readers to [14] for the active finding phase.

n

r

s

[s, n]

[n, r] join

Fig. 2. n receives the
join request of r

n

r

s

x

[s, n]

[n, r]join
(n, x)

[x, r]

Fig. 3. Path [s, n] +
(n, x) + [x, r]

n

r
z

bg

y

s

x
a

[s, n]

Fig. 4. Finding the best
descendant

A. Finding More Sub-Optimal Path

Now, n determines whether the resultant multicast tree will be of
better optimality if r joins at one of its descendant node. The cost of
supporting r is the sum of the total bandwidth additionally reserved
for r on the multicast tree. This includes the bandwidth reserved on
[n, r]join and the bandwidth increased on [s, n]. The bandwidth that is
reserved on [n, r]join can be calculated by hop[n, r]join ∗ B(r). As
[n, r]join is stored in the join request message, this value can be calcu-
lated locally at n. However, finding the additional bandwidth needed in
[s, n] is not always trivial. In order to avoid requiring message probing

GLOBECOM 2003 - 3598 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

to obtain the information, we focus on reducing the bandwidth used on
the path from n to r.

Let x be a child of n and [x, r] be a path from x to r that does not
pass through any on-tree node as shown in Figure 3. For path [s, n] +
(n, x)+ [x, r] to be a feasible path, the following conditions have to be
satisfied:
(1) c(n, x) ≥ B(r) − B(n, x) (for bandwidth requirement)
(2) c[x, r] ≥ B(r) (for bandwidth requirement)
(3) d[x, r] ≤ D(r) − d(n, x) − d[s, n] (for delay requirement)

To find a feasible [x, r] that satisfies conditions (2) and (3), n can
invoke a unicast QoS algorithm. As n does not know the whole tree
structure, it is possible that the [x, r] found traverses one or more on-
tree nodes. We will describe how to handle this case in the next section.
In the rest of this section, we assume that [x, r] does not pass through
any on-tree nodes. After finding a feasible [x, r], n determines whether
[s, n] + (n, x) + [x, r] is more sub-optimal in the sense that the ad-
ditional bandwidth used in this path for receiver r is smaller than the
bandwidth needed in [s, n] + [n, r]join.

It is not difficult to see that if hop[x, r] < hop[n, r]join, then path
[s, n]+(n, x)+[x, r] is more sub-optimal than [s, n]+[n, r]join. n uses
its own link-state information and the provided QoS routing algorithm
to find a path from its child x to the receiver r that satisfies the delay
and bandwidth requirement. If the number of hops on [x, r] is smaller
than the number of hops on [n, r]join, the multicast tree would be more
sub-optimal if r joins at x. By using this mechanism, we can find the
optimal tree for the example described in Section II. If n finds that no
child can provide a more sub-optimal path, it can go ahead and setup
[n, r]join. If it is more sub-optimal for r to join at a child x, it tries to
setup the more sub-optimal path.

B. More Sub-Optimal Path Setup

After n realizes that it would be more sub-optimal if r joins at its
child x, it sends a message to inform x. Then, x can determine whether
it is better for r to join at x itself or x’s child. If x also finds that it is
better for r to join at one of its children instead of itself, it can ask that
child to check its children. Finally, there must be a descendant, y, of n
such that it is more sub-optimal for r to join at y than at y’s children.
We refer to this descendant node as the best descendant.

Consider the network in Figure 4, where solid lines are tree edges and
dashed lines are other links in the network. Suppose that all links have
sufficient bandwidth for joining receiver r and delay is not important.
Assume that r finds the path n → a → b → r as [n, r]join. However,
it is not an optimal path and the optimal path is n → x → y → r. n
finds [x, r] and it realizes that hop[x, r] = 2 < hop[n, r]join. n then
asks x to check its children. x finds that y is a better position for r to
join the tree since hop[y, r] = 1 < hop[x, r]. x then sends a message
to y to ask y to finds the best child of y for r to join. As y is only one
hop away from r, it does not have to check its children.

We now describe how the best descendant sets up the more sub-
optimal path from itself to r. Let the best descendant node be y and
the path from y to r be [y, r]optimal as shown in Figure 5. After
realizing itself as the best descendant, y informs r the optimal path
[y, r]optimal (Figure 5(a)). When r receives [y, r]optimal, r sends the
optimal join request message to y along the reverse path of
[y, r]optimal (Figure 5(b)). This message contains r, B(r), D(r),
and [y, r]optimal. An off-tree node processes an optimal join
request in the same way as it processes a join request message from
a joining receiver.

If [y, r]optimal does not pass through any intermediate on-tree
node, which is the case illustrated in Figure 5, the optimal join
request will arrive at y. y then sends the message along the path
to s towards n (Figure 5(b)). When n receives the optimal join

request, it sends optimal join request accept to r along
path [n, y] + [y, r]optimal to confirm the bandwidth reservation and
bandwidth reserve release along [n, r]join to release the
pending reservation made on that path (Figure 5(c)).

n

r

y

s

��������
��������
��������

��������
��������
��������

[s, n]

n

r

y

s

���������
���������
���������

���������
���������
���������

������
������
������
������
������
������

������
������
������
������
������
������

[s, n]

n

r

y

s

��������
��������
��������

��������
��������
��������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

[s, n]

bandwidth
reserve

release
join request

accept

optimal

(a) y informs r about
[y, r]optimal

(b) Sending optimal
join request

(c) n finalizes the
reservations

Fig. 5. Optimal Path Setup when [y, r]optimal does not pass through any
on-tree node

However, if [y, r]optimal passes through one or more intermediate
on-tree node, setting up [y, r]optimal will create loop in the multicast
tree and has to be avoided. An example of this scenario is Figure 6(a).
In that figure, [y, r]optimal passes through z and setting up that path
will create a loop. Let z be the first on-tree node that receives the
optimal join request that r sends towards y as shown in Fig-
ure 6(b). There are two cases: r can join at z and r cannot join at
z. r can join at z if the path [s, z] + [z, r]optimal is a feasible path.
[s, z] + [z, r]optimal is a feasible path if B(parent(z), z) ≥ B(r)
and d[s, z] ≤ D(r) − d[z, r]optimal. Note that hop[z, r]optimal <
hop[n, r]join, since [z, r]optimal is a subpath of [y, r]optimal. There-
fore, the bandwidth needed on [z, r]optimal must be less than the band-
width required on [n, r]join. As we require B(parent(z), z) ≥ B(r)
for r to join at z, no additional bandwidth is needed on [s, z]. There-
fore, the extra bandwidth needed to build the tree if r joins at z must be
less than the extra bandwidth required if r joins the multicast tree at n.
Case I: r can join at z
In this case, z informs r that the optimal join request is accepted. On
the other hand, z has to inform y and n that r is not going to join at
them. That is, as shown in Figure 6,
(a) z sends optimal join request accept to r using path

[z, r]optimal (Figure 6(c)).
(b) z sends join request clear to y using the reverse path of

[y, z]optimal (Figure 6(d)).
(c) when y receives the join request clear message, it sends

the message to n using the reverse path of [n, y] (Figure 6(d)).
(d) when n receives the join request clear message, it sends

bandwidth reserve release on [n, r]join (Figure 6(e)).
We now use an example to illustrate the details of this case. Consider

the network in Figure 7(a) where a solid edge represents a tree edge
and a dash edge represents a non-tree edge. The numbers associated
with an edge show the bandwidth reserved on the edge for the multicast
group and the residual bandwidth on that link. For example, 2/1 means
that there are 2 units of bandwidth reserved for the multicast group and
there is 1 unit of bandwidth remaining in the edge. Since a non-tree
edge should not have bandwidth reserved for the multicast group, the
number representing that is always zero for a dash edge in the figure.
Suppose that receiver r wants to join the multicast tree with source
s. Note that the link-state information of receiver r reflects only the
bandwidth remaining on an edge. That is, it realizes that there is only 1
unit of bandwidth available on (s, z).

When r wants to join the multicast group, r computes [s, r]join

that satisfies the delay and bandwidth requirements. Suppose that
B(r) = 2 and D(r) = ∞. According to the link-state information
of r, s → n → a → b → r is the only path that satisfies the require-
ment. Therefore, r sends a join request to b. As b is an off-tree node,

GLOBECOM 2003 - 3599 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

n

y
r

z

s

[s, n]
[s, z]

[n, r]join

optimal

[y, z]optimal

[n, y]
[z, r]

n

y
r

z

s

[s, n]
[s, z]

[n, r]join

optimal

[y, z]optimal

[n, y]
[z, r]

n

y
r

z

s

[s, n]
[s, z]

[n, r]join

optimal

[y, z]optimal

[n, y]
[z, r]

n

y
r

z

s

[s, n]
[s, z]

[n, r]

[s, r]

join

optimal

[y, z]optimal

[n, y]

n

y
r

z

s

[s, n]
[s, z]

[n, r]

[s, r]

join

optimal

[y, z]optimal

[n, y]

(a) y informs r about
[y, r]optimal

(b) optimal join
request arrives at z

(c) z sends optimal
join request
accept to r

(d) z sends join
request clear to y
and y sends it to n

(e) n sends bandwidth
reserve release to
along [n, r]join

Fig. 6. Optimal Path Setup when [y, r]optimal passes through on-tree node z and r can join at z

b

zn

a

r

s

y

2/1 0/30/3

2/1

0/3

0/30/3

2/2

zn

r

s

y

2/1

2/1

2/2

2/1

(a) Initial Tree (b) Resultant Multicast Tree

Fig. 7. Optimal Path Setup Example

it marks the bandwidth on (b, r) as pending and sends the join request
message to a. Subsequently, the message will arrive at n.

When n receives the join request message, n determines that r can
join the multicast tree at itself. It then goes to the active optimization
phase. It finds a feasible path from y to r and [y, r] = y → z → r.
As hop[y, r] < hop[n, r], n determines that it is better for r to join the
tree at its child y. Therefore, n informs y to check its children.

As y does not have any child, it knows that it is the best descendant
and [y, r]optimal = y → z → r. y then informs r the more sub-
optimal path [y, r]optimal as illustrated in Figure 6(a).

When r receives the information of [y, r]optimal, it sends an
optimal join request on the reverse path of [y, r]optimal to
z as in Figure 6(b). As B(parent(z), z) (B(s, z)) is 2, which is
the same as B(r), z realizes that r can join the multicast tree at it-
self. Thus, z replies r with an optimal join request accept
message (Figure 6(c)). z also sends a join request clear mes-
sage to y and y sends the join request clear message to n as
shown in Figure 6(d). Upon receiving the join request clear
message, n knows that r no longer joins the multicast group at itself
through n → a → b → r and so it sends a bandwidth reserve
release message on the path to inform a and b to release the pending
bandwidth. The final multicast tree is shown in Figure 7(b).

In this example, our protocol is able to support r by using 2 addi-
tional units. If we used [n, r]join to support r, we would need 6 units.
Therefore, our protocol finds a more sub-optimal path to support a new
receiver.
Case II: r cannot join at z
In this case, z informs r that the optimal join request is rejected. It
also informs n that n should set up [n, r]join. In this case, we have
the same number of messages generated as in Case I. The message flow
illustrated in Figure 6 still applies, except that the messages are of dif-
ferent types in Figures 6(c) - (e). Due to space limitation, we refer
interested readers to [14] for details.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the active optimization
phase.

Storage
Each on-tree node has to keep only local state information about each
multicast tree. We described the information needed in Section III.
Therefore, our proposed active optimization phase does not require ad-
ditional information to work on.
Runtime Complexity
The most expensive step is for n to check whether it is better for r to
join at its child. It involves at most one execution of a unicast QoS
routing algorithm for each child. Since it is not likely that a node has a
lot of children, the runtime complexity of finding the best child is not a
serious concern.
Message Complexity
Extra messages are generated when n, the first on-tree node that
the join request of receiver r encounters on the reverse path of
[s, r]join, finds that it is more sub-optimal for r to join at one of its de-
scendants. Note that if n determines that [n, r]join is already the best
path, no extra message is generated. Note also that we don’t increase
the messages traversing [n, r]join, no matter whether r finally joins at
n or not. Therefore, in the following, we describe only the case when n
identifies a potentially more sub-optimal path for r to join. Moreover,
the messages on [n, r]join are ignored in the following discussion.

Figures 5 and 6 show how to setup more sub-optimal paths. The
first extra message generated is for n to find the best descendant y.
To find y, n passes a message to its child and that child passes a
message to its own child until the message reaches y. There will be
hop[n, y] number of such messages generated. When y informs r about
the path [y, r]optimal, it takes hop[y, r]optimal messages (Figures 5(a)
and 6(a)). The total number of messages generated up to this point is
hop[n, y] + hop[y, r]optimal.

If [y, r]optimal does not pass through any on-tree node, the
optimal join requestmessage sent by r will travel hop[n, y]+
hop[y, r]optimal hops (Figure 5(b)). It takes the same number of hops
for the optimal join accept to travel back to r (Figure 5(c)).
That is, in this case, 2 ∗ (hop[n, y] + hop[y, r]optimal) messages are
generated.

If [y, r]optimal passes through an on-tree node z, no matter
whether r can join at z or not, the messages generated will be 2 ∗
hop[z, r]optimal + hop[y, z]optimal + hop[n, y] (Figure 6(b) - (d)).
Note that in this case, the total number of messages generated is less
than the case where [y, r]optimal does not pass through any on-tree
node.

Therefore, in the worst case, there will be 3 ∗ (hop[n, y] +
hop[y, r]optimal) extra messages generated. As hop[n, y] +
hop[y, r]optimal < hop[n, r]join, our protocol does not increase the
message complexity asymptotically. In fact, in some protocols that find
a feasible path for r to join the multicast group, the messages needed
may be more than 3 ∗ hop[n, r]join, which is more than the worst case
of our active optimization phase.

GLOBECOM 2003 - 3600 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

Total Bandwidth Used
The main goal of our protocol is to find a more sub-optimal tree than
existing protocols do. As our protocol allows a receiver to join at a
different node only when the resultant tree utilizes less bandwidth, our
protocol will not build a less optimal tree than existing protocols w.r.t.
to the same receiver. On the other hand, as the protocol always selects
a path with fewer hops for the receiver to join, the size of the final tree
is also reduced.
Optimality vs. Scalability
It is undeniable that our protocol cannot find the most optimal tree.
However, there is a tradeoff between optimality and scalability. For ex-
ample, to make the optimization more effective, instead of only search-
ing for the best descendant, we can search the whole tree to find the best
node. Unfortunately, this extensive search may generate a lot of mes-
sages and is not scalable. As our protocol requires only local state infor-
mation and the message overhead is reasonable, our protocol achieves
a good balance between optimality and scalability.

VI. SIMULATION

To measure how effective the active optimization is, we conduct sim-
ulation. We generate 100 different networks for each network size
based on the BRITE topology generator and 10 different multicast
groups for each network. That is, there are 1000 different instances for
each network size. The network sizes are 50, 100, 150, 200, 250, and
300 while the average node degree is 4. The size of a multicast group
is 10-20% of the network size. The link bandwidths and link delays
are generated using a uniform distribution within a certain range. The
ranges of link bandwidth and link delay are 3-10 and 2-10, respectively.
We use the algorithm in [13] as the QoS routing algorithm.

Whether the bandwidth required for a new receiver can be decreased
depends on whether the active optimization phase finds a more sub-
optimal path for the receiver to join. Table I shows how often the pro-
tocol is able to realize a more sub-optimal path than the path found in
the active finding phase and shows how much bandwidth our protocol
can optimize. The 2nd column presents the percentage of the multicast
groups that the active optimization phase identifies a better path for one
or more receivers in that group. That is, among the 1000 multicast
groups generated for networks of size 50, 583 groups are benefited by
our protocol. The 3rd column presents on average, how many members
(in terms of percentage) within the same multicast group, that success-
fully join the tree, are benefited. That is, on average, our protocol sets
up more sub-optimal paths for 22% of the members in a multicast group
of network size 50. We also measure how much bandwidth is saved for
each optimized path. The percentage saved is calculated by the follow-

ing formula original bandwidth used - optimized bandwidth used
original bandwidth used .

As illustrated in Table I, our protocol saves more than 40% of the
bandwidth used when the active optimization phase successfully sets
up a more sub-optimal path.

Size % of Groups % of Members % saved

50 58.3 22 45.5
100 78.1 21 46.2
150 82.7 18 46.4
200 89.4 16 44.9
250 93.0 17 44.7
300 97.0 15 44.3

average 83.1 18.2 45.3

TABLE I
FREQUENCY OF FINDING MORE SUB-OPTIMAL PATH

As described in Section IV, the first on-tree node a join request en-
counters attempts to setup a more sub-optimal path only when it real-
izes that it is more sub-optimal for the receiver to join at one of its child.
Since the more sub-optimal path is found by using up-to-date link-state
information, as long as the network state does not change, the more sub-
optimal path can be setup successfully if it does not pass through other
on-tree node. However, if the more sub-optimal path passes through
one or more on-tree nodes, the setup may not be successfully (Case II
of Section IV-B). In this case, although extra messages are generated,
bandwidth is not saved. This is undesirable and we measure how often
this happens. Among all the attempts in setting up a more sub-optimal
paths, less than 4% (2.5% in average) of them are unsuccessful. As we
can save more than 40% of the bandwidth in a successful attempt, this
unsuccessful rate is not serious.

VII. CONCLUSION

In this paper, we study the problem of finding an optimal multicast
tree for heterogeneous receivers. We demonstrate why existing proto-
cols fail to find an optimal path for a joining receiver. We then describe
our protocol that aims at solving the problem by actively finding a more
sub-optimal path. We show that our protocol requires only local state
information and never produces a tree that is worse than a tree built us-
ing existing protocols with reasonable message overheads. Our simula-
tion results show that our protocol successfully improves the bandwidth
usage in building a multicast tree.

REFERENCES

[1] P. Winter, “Steiner Problem in Networks: A Survey,” Networks, pp. 129 –
167, 1987.

[2] S. McCanne and V. Jacobson, “Receiver-driven Layered Multicast,” in
ACM Proceedings of the SIGCOMM ’96, 1996, pp. 117 – 130.

[3] S. McCanne, M. Vetterli, and V. Jacobson, “Low-Complexity Video Cod-
ing Receiver-driven Layered Multicast,” IEEE Journal on Selected Areas
in Communications, vol. 15, no. 6, pp. 983 – 1001, 1997.

[4] S. Servetto et. al., “Video Multicast in (Large) Local Area Networks,” in
IEEE Proceedings of the INFOCOM ’02, 2002.

[5] L. Sahasrabuddhe and B. Mukherjee, “Multicast Routing Algorithms and
Protocols: A Tutorial,” IEEE Network, vol. 14, no. 1, pp. 90 – 102, Jan/Feb
2000.

[6] B. Wang and J. Hou, “Multicast Routing and Its QoS Extension: Problems,
Algorithms, and Protocols,” IEEE Network, vol. 14, no. 1, pp. 22 – 36,
Jan/Feb 2000.

[7] N. Maxemchuk, “Video Distribution on Multicast Networks,” IEEE Jour-
nal of Selected Areas in Communications, vol. 15, no. 3, pp. 357 – 372,
Apr. 1997.

[8] N. Shacham and J. Meditch, “An Algorithm for Optimal Multicast of
Multimedia Streams,” in IEEE Proceedings of the INFOCOM ’94, 1994,
pp. 856 – 864.

[9] S. Chen, K. Nahrstedt, and Y. Shavitt, “A QoS-Aware Multicast Routing
Protocol,” in IEEE Proceedings of the INFOCOM ’00, 2000, pp. 1594 –
1603.

[10] A. Gei and M. Gerla, “Receiver-Initiated Multicasting with Multiple QoS
Constraints,” in IEEE Proceedings of the INFOCOM ’00, 2000, pp. 62 –
70.

[11] B. Wang and J. Hou, “QoS-Based Multicast Routing for Distributing Lay-
ered Video to Heterogeneous Receivers in Rate-based Networks,” in IEEE
Proceedings of the INFOCOM ’00, 2000, pp. 480 – 489.

[12] D.-N. Yang, W. Liao, and Y.-T. Lin, “MQ: An Integrated Mechanism for
Multimedia Multicast,” IEEE Transactions on Multimedia, vol. 3, no. 1,
pp. 82 – 97, Mar. 2001.

[13] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting mul-
timedia applications,” IEEE Journal on Selected Areas in Communica-
tions, vol. 14, no. 7, Sept. 1996.

[14] K. Lui, J. Wang, X. Li, and K. Nahrstedt, “Qos multicast routing with
heterogeneous receivers,” Tech. Rep., Department of Computer Science,
University of Illinois at Urbana-Champaign, Jan. 2003.

GLOBECOM 2003 - 3601 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

