
A Framework for Understanding the Factors
Influencing Pair Programming Success

Mustafa Ally, Fiona Darroch, and Mark Toleman

Department of Information Systems, University of Southern Queensland
Toowoomba Qld 4350 Australia

{Mustafa.Ally,Fiona.Darroch,Mark.Toleman}@usq.edu.au

Abstract. Pair programming is one of the more controversial aspects of
several Agile system development methods, in particular eXtreme Pro-
gramming (XP). Various studies have assessed factors that either drive
the success or suggest advantages (and disadvantages) of pair program-
ming. In this exploratory study the literature on pair programming is
examined and factors distilled. These factors are then compared and con-
trasted with those discovered in our recent Delphi study of pair program-
ming. Gallis et al. (2003) have proposed an initial framework aimed at
providing a comprehensive identification of the major factors impacting
team programming situations including pair programming. However, this
study demonstrates that the framework should be extended to include
an additional category of factors that relate to organizational matters.
These factors will be further refined, and used to develop and empirically
evaluate a conceptual model of pair programming (success).1

1 Introduction

Pair programming is a core (some would say mandatory) practice of eXtreme
Programming (XP) [2], and commonly applied and or recommended for use
in conjunction with many other Agile software development methods including
Feature Driven Development, Scrum, Lean Software Development, Crystal, and
Dynamic Systems Development Method.

Various definitions of pair programming have been proposed [12, 20, 23]. Jensen
[12] describes it as ‘two programmers working together, side by side, at one
computer collaborating on the same analysis, design, implementation, and test’.
Compared to traditional programming where typically one programmer is re-
sponsible for developing and testing their own code, in pair programming every
code fragment is developed by a team of two programmers working at the same
workstation. There are two roles, viz, a driver controlling the mouse, keyboard
or other input device to write the code and unit tests, and a navigator, ob-
serving and quality assuring the code, asking questions, considering alternative
approaches, identifying defects, and thinking strategically. The partners are con-
sidered equals and will regularly swap roles and partners [22].

1 Accepted for XP 2005, http://www.xp2005.org, Sheffield, UK, 18–23 June

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11034646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

The need for this study arises from the lack of an all-encompassing theory
about the factors that influence pair programming success and the extent of
this influence. Pair programming may have a basis in theories of group problem
solving and decision making [8, 14], but any explicit reference to such theories
for its use seems difficult to locate. Most research has tended to be fragmented
and restricted to specific issues. A useful framework for research on team pro-
gramming situations is found in [8]. This paper builds on and extends their
preliminary work by adopting a holistic approach and analyzing and synthesiz-
ing the literature findings and empirical data collected for this study, with the
future aim of developing a conceptual model of pair programming success.

This paper reports an analysis of the literature involving empirical research
on pair programming, to discover theoretical concepts and factors relevant to
the practice. Since pair programming is one of the more contentious aspects of
Agile system development (particularly eXtreme Programming), it has attracted
much attention and consequently become the focus of numerous studies, both in
the field with real-life examples and professionals, and in an educational context
with students as subjects. These studies have employed a range of research meth-
ods to investigate this phenomenon including: case studies, experience reports,
surveys and experiments. Space precludes all the literature being presented and
represented here but that mentioned typifies the studies and views taken.

The paper also reports a comparison of the factors arising from the liter-
ature analysis and our recent Delphi study of pair programming [19]. Briefly,
the Delphi technique emerged from work at the US Department of Defence and
the RAND Corporation in the 1950s. It is a qualitative, structured group in-
teraction technique and its use is well documented [5, 17]. The objective of the
technique is to allow the researcher to obtain a reliable consensus from a panel
of experts where the phenomenon or situation under study is political or emo-
tional and where the decisions affect strong factional interests. The technique
then collates, synthesizes and categorizes those opinions until general consensus
is reached. In the Delphi study, 20 participants engaged in three (3) rounds to
reach consensus on issues about pair programming from both an organizational
and an individual’s perspective. The Delphi participants, comprising academics,
software developers and managers, were selected on the basis of their pair pro-
gramming experience, software development expertise, and industry reputation.
Participants were drawn from a range of different types and sizes of organiza-
tions to give a broad perspective to the study. In the text that follows, selected
representative quotations from Delphi participants are shown in ‘quotes’. This
study reports partial findings from the Delphi study. Further in-depth analysis
of the Delphi study data and the development of models to relate the factors
identified with measures of pair programming success are yet to occur.

This paper is structured as follows. The next section identifies concepts found
in both the literature and from the Delphi study and where the views relevant to
pair programming coincide. In the third section concepts related to pair program-
ming, where the views are opposing, are reviewed. The fourth section reviews
concepts arising in only one source: either the literature or the Delphi study but



3

not both. The fifth section aligns the factors identified in this study to the initial
framework proposed by [8]. The final section offers conclusions and expectations
for future work.

2 Concepts in Common: Literature & Delphi

This section identifies concepts found in both the literature and in the Delphi
study, where the views relevant to pair programming coincide. Literature relevant
to the concept is reported, as is representative mention of the concept in the
Delphi study providing further validation of the practical implications of the
concept. Fifteen concepts are identified.

Quality. There are many references in the literature that support the con-
cept of improved quality arising from pair programming situations. Poole and
Huisman [15] suggest that pair programming results in improved engineering
practices and quality, as evidenced by low error rates. Improved quality was
manifested in earlier bug detection/prevention [4]. Experiments with ‘industrial’
programmers showed error rates were reduced by two-thirds and needed less
iterations to fix them when pairing [12, 13]. Equally, in the Delphi study the
issue of improved quality was raised many times, both from organizational and
individual perspectives. The general consensus was that code quality improved
through the pairing process resulting in fewer bugs and better designs. Also on
the issue of code maintenance ‘usually if someone is programming with you, bet-
ter choices are made for variable names, better structure, (and) programmers
aren’t as lazy keeping coding standards’.

Team building and pair management. Two aspects of team management
raised in the literature were that pair programming engenders a team spirit; and
that there is a need for training in team building [12, 18]. The Delphi study
affirmed the import of these team management concepts, emphasizing that pair-
ing is a social activity where ‘one has to learn how to work closely with others,
(to) work effectively as a member of a team’. The need to develop these skills
was highlighted in the Delphi study where ‘traditionally, IT study/training alone
does not equip individuals with the interpersonal skills required for effective pair-
ing’. The Delphi also raised issues related to managing the paired programming
process, including pragmatic issues such as pair rotation and ‘what do you do
when there are odd numbers of people on a team?’; resolving personality con-
flicts, for example where ‘an obsessively neat person (is required to) work with a
messy person’ and ‘people that no-one wants to work with’; and logistical issues
such as when ‘pairs need to start/end work at the same time’.

Pair personality. Dick and Zarnett [6] identified personality traits as play-
ing a vital role in the success, or otherwise, of pair programming. The Del-
phi study identified two specific issues that need to be addressed: personality
conflicts ‘when two people have different ideas, or different styles of dealing
(with) problems’ and ‘some people just don’t like accepting other people’s sug-
gestions/ideas’; and divergent personal styles where ‘some programmers like to



4

discuss with others, while some do like to work on issues by themselves’ and
‘(pairing) strong personalities together with weak personalities’.

Threatening Environment. Both [6, 18] highlight the problem for indi-
viduals in the pair of the fear of feeling and/or appearing ignorant on some
programming or system development aspect to one’s partner. The Delphi Study
supported this indicating that working in pairs may expose an individual’s weak-
nesses and competencies. Comments included: ‘Most people new to pairing find
the prospect frightening/threatening – will I appear stupid/ignorant?’ and ‘Shar-
ing knowledge (and ignorance) on a daily basis can be threatening’.

Project management. Pair programming raises issues for project man-
agement. On the positive side, it may act as a backup for absent or departing
developers [7, 23]. This was also reflected in the Delphi study with ‘no one person
has a monopoly on any one section of the code, which should remove organiza-
tional dependencies on particular resources and mitigate risk to the business’.
On a less positive note, there are challenges for project management in terms
of planning and estimation. This was highlighted in the Delphi study by ‘Meth-
ods of planning/estimating need to change when (a) team is pair-programming
rather than tackling tasks as individuals’.

Design and problem solving. There is ample evidence that pair program-
ming results in improved design and problem solving through the removal of
‘tunnel vision’ and the exchange of ideas [12, 16, 23]. It is especially suited to
dealing with very complex problems that are too difficult for one person to solve
[4, 21, 23]. Experiments have provided supporting empirical evidence about im-
proved design [13]. This sentiment was affirmed in the Delphi study where it
was felt that design decisions and difficult problem resolutions would be supe-
rior, and that ‘it very often solves complex problems much more effectively than
a single person would’, as well as the potential to ‘find problems in advance’.

Programmer resistance. An important issue for management consider-
ation is that many programmers resist (at least initially) pair programming.
There are many facets to this issue including: a reluctance to share ideas; ego
problems where some people think they are always right; and lack of trust where
comments may be taken as personal criticism [18]. Therefore, there is a need
for strategies to introduce pair programming ‘softly’, recognizing that even after
coaching some programmers resist working in pairs [18]. In the Delphi study the
resistance to pairing was also raised, especially among the ‘old-school program-
mers who find it difficult to change habits’.

Communication. The literature cites communication as integral to pair
programming [7], and that it helps to get people to work better [4]. The Delphi
study also supported that pair programming requires and ‘fosters communication
skills in the team’, and ‘improves interactions between team members’.

Knowledge sharing. The literature proposes that pair programming presents
opportunities for improved knowledge transfer [7]. Pairs learn a great deal from
one another [4] including changed behaviour, habits, ideas and attitudes [18].
The Delphi study also cited improved knowledge transfer in a variety of con-
texts including: that the programmers’ knowledge became more broad-based;



5

that it enabled a concurrent understanding rather than a post-explanation; that
it resulted in more thorough domain knowledge; and that it could act as a
backup/contingency plan in cases of illness or resignation. In contrast, the Del-
phi study also raised some negative aspects of knowledge sharing viz. that pairing
may result in programmers having a broader, but shallower understanding of the
system; and that some may find knowledge sharing to be threatening.

Mentoring. The literature found that pair programming provides an ideal
environment that greatly facilitates mentoring [6, 15]. Positive outcomes were en-
joyed by senior staff [15], as well as less experienced programmers, who learned
from their more experienced partners [12, 13]. Several responses in the Delphi
study attested to the mentoring benefits arising out of their pair programming
experiences: ‘There is a fast tracking of skills development with careful choice of
pairs (for example) mentor/ junior role’ and ‘it can really help with the develop-
ment of new programmers’. However, ‘it helps if you have a good programmer
who is able to explain, or teach, an inexperienced programmer’. The point where
mentoring becomes training was raised in the Delphi study as evidenced by ‘that
each (developer) has a say in how the task is to go ahead (that is) it is a team
not a mentor/junior process. In this case I don’t think it is pair programming
but more like training’.

Environment requirements. An unsuitable physical environment may act
as a barrier to pair programming success [12]. This was reflected in the Delphi
study. The physical environment should facilitate two programmers working at
a single workstation because ‘most single person desks are not comfortable for
two people to sit at’ and ‘our desks are L-shaped, and as such do not allow two
developers to sit side-by-side comfortably’. This work environment may be more
disruptive as ‘good pairs interact constantly’. Of course individual environmental
preferences may vary, for example a liking for differing styles of keyboards.

Effective pairs. While there is agreement that the dynamics of the pairs
needs to be carefully considered, there is no agreement as to what constitutes the
most effective pair combinations. For instance, [12] suggests that it is counter-
productive to pair two programmers of equal skill. This sentiment was also re-
flected in the Delphi study: ‘for two equally competent programmers I see this
as a waste of resource’. The contrary view was also expressed that ‘pair pro-
gramming between experienced programmers is often more useful when it comes
to making design decisions’. Two instances where effective pairing may produce
beneficial results are (1) where a new developer is placed in a pairing situation
and can start being productive immediately, and (2) where a junior programmer
might need mentoring. However, the Delphi study revealed that the dynamics of
the pairs needs to be considered carefully. Many combinations would not work
well: a novice programmer could slow down (and potentially annoy) a skilled
programmer, while lowering the self-esteem of the former; two skilled program-
mers working together could have the effect of negating productivity benefits,
for instance when the navigator becomes increasingly frustrated at the lack of
involvement, or when there is contant ‘clashing of the minds’; two novice pro-



6

grammers could benefit from pair programming, but they run the risk of ‘the
blind leading the blind’.

Shared responsibility. Both [1, 18] argued that by spreading responsibility
and decision-making load, pairs effectively ‘halve’ the problem solving. Individ-
uals feel more confident about the decisions made, and less overwhelmed by
decision-making responsibilities. The Delphi study respondents agreed, noting
that ‘new developers can feel more confident about attacking complex code be-
cause there is someone else there with them’, and further that they are ‘helping
someone else with their assigned duties’.

Human resource management. Pair programming has implications for
the recruitment process of hiring programmers [6]. It also challenges traditional
human resource ideas of individual-based performance evaluation and remuner-
ation. These team-based approaches need new management strategies to be con-
sidered that are significantly different from those traditionally used for software
developers [18]. Many of these human resource issues were raised in the Del-
phi study generally: ‘traditional performance measures focus on the individual –
how do you map entrenched HR practices/requirements of a large organization
to a collaborative team structure’; from an organizational perspective: ‘emphasis
moves to team success rather than individual success’; and from an individual
perspective: ‘a programmer cannot look at a subsystem and say “I did that”;
success is now team-based, not individual-based’.

Attitude. A stereotypes of programmers is the ‘lone-hacker’. Pair program-
ming has been shown to change programmers’ attitude from withdrawn, in-
troverted and worried, to outgoing, gregarious and confident [1]. Delphi study
participants agreed, noting that ‘some people have entered the industry because
it is one where they can be alone for long periods’ but that ‘one has to learn
how to work closely with others’ and ‘work effectively as a member of a team’.

3 Opposing Perspectives: Literature & Delphi

A significant finding of this study is that some of the issues raised in the lit-
erature were also raised in the Delphi study, but from opposing viewpoints. It
is notable that for these factors the literature is consistently positive about the
concept in contrast to the Delphi study in which the same issues appear as bar-
riers or hindrances. Thus the Delphi study effectively contradicts the practical
implications of the concept as it is presented in the literature.

Morale. The literature suggests that morale can be improved by using pair
programming, especially when working on a difficult or complex system. This
morale ‘boost’ may be in the form of positive reinforcement by peers [15] but
also because ‘there’s someone there to celebrate with when things go right’ [1].
In the Delphi study, the impact of pair programming on morale was raised in a
negative light for example when it came to a mismatch of skills: ‘there’s a high
probability one member of the pair will resent the other one and lower their
morale whilst working with this person’.



7

Productivity. The literature cites many examples of improved productivity
arising from pair programming [12, 15, 18]. This includes experiments with ‘in-
dustrial’ programmers [12, 13]. This was in part attributed to a shared conscience
where pairs are less likely to indulge in time-wasting activities [23]. Pairs wasted
less time trying to solve problems compared to working alone [12]. However in
the main, the Delphi study suggested lower productivity or at least perceptions
of lower productivity. In particular, management is yet to be convinced of the
productivity benefits of pair programming: ‘corporate viewed pairing as being
. . . twice as slow as traditional development’. In certain pairing scenarios pairing
was seen to be less productive: ‘two top programmers would (have) lower pro-
ductivity’. It was even suggested that the quantity of code ‘usually goes down
per hour when taking into account the number of people working on it’. In con-
trast, it was suggested by one participant that the definition of code generation
needed to be considered in developing any measure of productivity: ‘if design
reviews are accepted as being part . . . then productivity gains are higher’.

Development costs. Clearly, development costs are an important issue for
software construction. The literature suggests code costs are slightly higher ([21]
suggests 15%) with pair programming, but that it is offset by improved code
quality, and minimization of and the earlier detection of bugs [4, 13]. Delphi study
participants were far from convinced. They noted the problem for management of
an apparent doubling of cost for development of the same feature: ‘development
throughput is reduced, not only by halving the number of people actively coding
simultaneously, but also because there is additional collaboration on the design
of the code’. An interesting take on the situation was that ‘a pair wasting time
costs twice as much as a single developer wasting time’.

Enjoyment of work. Students and professional programmers report finding
their work to be more enjoyable when pairing [23]. However, this is an opposing
viewpoint to the Delphi study where it was described as an unpopular activity
that resulted in lowered personal satisfaction.

4 One Source Concepts: Literature & Delphi

Some factors were raised in either the literature or the Delphi, but not both,
which may suggest that saturation of all the issues involved has not yet occured.

Factors that appeared only in the literature included: project schedule po-
tential where project timelines can be realistically shortened through a change in
workflow to a more speedy iteration of plan, code, test and release [1, 3, 9, 24]; fit
of pair programming to project type where experiments have shown that
pair programming is especially suited to situations characterized by changing re-
quirements, and unfamiliar, challenging or time-consuming problems [13]; code
readability where source code readability is greatly enhanced by using pair pro-
gramming [10]; and distributed pair programming where appropriate tools
can assist distributed pair programming where co-location is not possible [11].

Factors that arose only in the Delphi study included: collective code own-
ership through pair programming minimizes the introduction of coding flaws



8

and enhances concurrent understanding of the code base; accountability con-
cerns the shift of responsibility from the individual to the pair through collective
code ownership; customer resistance to pair programming through the per-
ception of increased costs; organizational culture and its influence on the
acceptance of pair programming, and the influence of pair programming on the
organization; and solitude and privacy opportunities are reduced when pair
programming, with the increased potential for stress and ‘programmer burnout’.

These factors (and possibly others) will be more fully analyzed prior to in-
corporation into a conceptual model.

5 Extension of Gallis et al. (2003) Framework of Factors

An initial framework for research on pair programming has been proposed ([8]
summarized in their Fig. 1). While their study was based on four different config-
urations of team programming, this study focuses specifically on pair program-
ming. In addition, [8] considered a specific set of literature including their own
pair programming studies in developing their research framework. This study ex-
tends their framework by considering additional literature, and individual and
organizational issues identified in our Delphi study. They identified dependent
variables (time, cost, quality, productivity, information and knowledge transfer,
trust and morale, and risk) which were affirmed and context variables, which
were affirmed but further elaborated in this study (see Table 1).

Also, our findings reveal an additional category of context variables, namely
organizational factors, which were repeatedly raised by the Delphi study partic-
ipants. The impact of the adoption of pair programming on organizations and
the impact of organizational culture on the practice of pair programming are
clearly important issues for further consideration. This extended framework will
form the basis for the development of a model of pair programming success.

6 Conclusions

Pair programming is controversial: the diverse literature on the practice and dis-
cussion with practitioners confirms the variety of factors affecting its success as
a practice, how it is viewed by practitioners, and its impact on software devel-
opment success. While there is a great deal of evidence in the literature about
pair programming success, there is much work to be done by an organization to
properly prepare for its implementation (especially overcoming resistance), and
it is clear that many of the ‘people’ issues require in-depth consideration.

This study suggests that further research is required particularly to examine
the breakdowns, that is, where the literature and practitioners hold opposing
views. In addition a more complete analysis is required of those factors that
appear in only one of either the literature or the practitioner experience.

Dependent and independent variables have been identified in the framework,
but further refinement is necessary. The next step is to formulate a conceptual
model of pair programming (success), which can be quantitatively tested. This



9

Table 1. Extension and elaboration of the Gallis et al. (2003) framework context
variables (sections where the variable appears in this paper are shown in parenthesis)

Gallis et al. (2003) This study

Subject variables

Education & experience Mentoring (2)

Personality Pair personality (2)
Programmer resistance (2)

Roles Shared responsibility (2)

Communications Communication (2)

Switching partners Project management (2)
Effective pairs (2)
Attitude (2)
Enjoyment of work (3)
Knowledge sharing (2)
Threatening environment (2)

Task variables

Type of development activity Design & problem solving (2)
Code readability (4)

Type of task Fit of pair programming to project type (4)

Environment variables

Software development process Project schedule (4)

Software development tools Distributed pair programming (4)

Workspace facilities Environment requirements (2)
Solitude & privacy (4)

Organizational variables

Team building & pair management (2)
Human resource management (2)
Accountability (4)
Customer resistance (4)
Organizational culture (4)
Collective code ownership (4)

work is in progress. There is a need for multi-disciplinary and mixed-method
research that will uncover behavioural strategies for a more complete under-
standing of the complexities of the human aspects of pair programming. Other
research includes pair programming experiments with students and practitioners.

References

1. Baer, M.: The New X-Men, viewed 1/12/04,
http://www.wired.com/wired/archive/11.09/xmen.html?pg=1&topic=&topic s (2003).

2. Beck, K.: Extreme Programming Explained: Embrace Change, Addison Wesley,
Boston (1999).

3. Brooks, F.P.: The Mythical Man-Month Essays on Software Engineering, Anniver-
sary Edition, Addison-Wesley, Boston (1995).



10

4. Cockburn, A. and Williams, L.: The Costs and Benefits of Pair Programming,
Proceedings of XP2000, Sardinia, Italy, June 21–23 (2000).

5. Day, L.: Delphi Research in the Corporate Environment, in Linstone and Turoff
(Eds) The Delphi Method: Techniques and Applications, Addison-Wesley, London
(1975).

6. Dick, A.J. and Zarnett, B.: Paired Programming and Personality Traits, Proceed-
ings of XP2002, Sardinia, Italy, May 26–29 (2002) 82–85.

7. Flies, D.D.: Is Pair Programming a Valuable Practice?, viewed 6/12/04,
http://csci.mrs.umn.edu/UMMCSciWiki/pub/CSci3903s03/StudentPaperMaterials/

flies-pairprogramming03.pdf (2003).
8. Gallis, H., Arisholm, E. and Dyb̊a, T.: An Initial Framework for Research on

Pair Programming, Proceedings of the 2003 International Symposium on Empirical
Software Engineering-ISESE 2003 (2003) 132–142.

9. Glass, R.L.: Software Runaways, Prentice Hall, New Jersey (1998).
10. Grenning, J.: Launching Extreme Programming at a Process-Intensive Company,

IEEE Software, 18(6) (2001) 27–33.
11. Hanks, B.: Empirical Studies of Pair Programming, 2nd International Workshop

on Empirical Evaluation of Agile Processes, New Orleans, Louisiana (2003).
12. Jensen, R.W.: A Pair Programming Experience, Journal

of Defense Software Engineering, March, viewed 1/12/04,
http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html (2003).

13. Lui, K.M. and Chan, K.C.C.: When Does a Pair Outperform Two Individuals?
in M. Marchesi and G. Succi (Eds) Extreme Programming and Aile Processes in
Software Engineering—4th International Conference, XP 2003 Lecture Notes in
Computer Science 2675 (2003) 225–233.

14. Napier, R.W. and Gershenfeld, M.: Groups: Theory and experience, Sixth Edition.
Boston, Houghton Mifflin Company (1999).

15. Poole, C. and Huisman, J.W.: Using Extreme Programming in a Maintenance
Environment, IEEE Software, 18(6) (2001) 42–50.

16. Pulugurtha, S., Neveu, J. and Lynch, F.: Extreme Programming in a Customer
Services Organization, Proceedings of XP2002, Sardinia, Italy, May 26–29 (2002)
193–194.

17. Rowe, G., Wright, G. and Bolger, F.: Delphi: A Reevaluation of Research and
Theory, Technological Forecasting and Social Change, 39(3) (1991) 235–251.

18. Sharifabdi, K. and Grot, C.: Team Development and Pair Programming—Tasks
and Challenges of the XP Coach, Proceedings of XP2002, Sardinia, Italy, May
26–29 (2002) 166-169.

19. Toleman, M., Ally, M. and Darroch, F.: A Delphi Study of Pair Program-
ming, Working paper, Department of Information Systems, University of Southern
Queensland (2005).

20. Wiki: viewed 1/12/04, http://c2.com/cgi/wiki?PairProgramming (2004).
21. Williams, L.: The Collaborative Software Process, unpublished PhD dissertation,

Department of Computer Science, University of Utah (2000).
22. Williams, L. and Kessler, R.: Pair Programming Illuminated, Addison-Wesley,

Boston (2002).
23. Williams, L., Kessler, R.R., Cunningham, W. and Jeffries, R.: Strengthening the

Case for Pair Programming, IEEE Software, 17(4) (2000) 19–25.
24. Yourdon, E.: Death March: The Complete Developer’s Guide to Surviving ‘Mission

Impossible’ Projects, Prentice Hall, New Jersey (1999).


