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Abstract: Radio frequency (RF) energy harvesting is an emerging technology that has the potential to eliminate the need for batteries and
reduce maintenance costs of sensing applications. The antenna is one of the critical components that determines its performance and while
antenna design has been well researched for the purpose of communication, the design for RF energy harvesting applications has not been
widely addressed. The authors present an optimised design for such an antenna for harvesting energy from medium wave broadcast transmis-
sions. They derive and use a model for computing the optimal antenna configuration given application requirements on output voltage and
power, material costs and physical dimensions. Design requirements for powering autonomous smart meters have been considered. The pro-
posed approach was used to obtain the antenna configuration that is able to deliver 1 mW of power to 1 k€2 load at a distance of up to 9 km,
sufficient to replace batteries on low-power sensing applications. Measurements using a prototype device have been used to verify the authors

simulations.

1 Introduction

Energy harvesting is a promising approach that may provide a
solution to enabling the autonomous operation of low-power
electronics and wireless sensors by extracting energy from the
ambient environment. The recent emphasis on energy and the en-
vironment [1] provides a strong motivation for developing energy
harvesting based operation of electronic sensors. One specific
application that has received a lot of interest in recent years is
smart metering. Smart meters are a constituent component of
the smart grid [2] to monitor the use of utilities (water, gas and
electricity) and report consumption back to the provider in
near-real-time so that utility companies can provide a more accur-
ate billing service and react to fluctuations in demand. As with
current utility meters, they are likely to be located close to both
commercial and residential property, with typically one per
utility per property. A smart meter consists of a sensor and
wireless device for reporting data, and consequently requires
power to function. Energy harvesting has the advantage in
making the sensors self-sustaining by harvesting energy from
rich ambient sources such as sunlight, electromagnetic waves,
heat gradient, wind, salinity gradients and kinetic energy. A
block diagram of a generic energy harvester is shown in Fig. 1.

Here, we present the design of a radio frequency (RF) energy har-
vester where the antenna has been designed using mathematical op-
timisation. In the case of an RF energy harvester, the transducer is
an antenna and the harvested energy largely depends on the optimal
functioning of the antenna together with highly efficient signal con-
ditioning circuitry which converts the RF signal to DC. This is then
used to power or charge the device, such as smart meters. One of the
critical components in the RF energy harvester is the antenna and
while antenna design has been well researched for the purpose of
communication, the design for RF energy applications presents
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Fig. 1 Block diagram of a generic energy harvester
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new requirements. The challenge is to design a compact antenna
that satisfies the power output requirements, fits within certain phys-
ical dimensions and cost constraints.

In this paper, we describe the system for RF energy harvesting
from medium wave (MW) broadcast signals and an optimisation ap-
proach for antenna design in this context. The key contribution of
this work is the design and application of a ferrite rod antenna for
RF energy harvesting applications from MW signals. The MW
band is attractive for energy harvesting applications because of
availability of very high-power transmitters, and a good coverage
compared with higher-frequency transmitters. Our second contribu-
tion is the design optimisation for the antenna in this context. To the
best of our knowledge, this is the first work that takes into account
the economic dimension of the problem, and obtains the lowest cost
antenna configuration given a certain set of requirements. As an
example case study, we use the proposed method to optimise the
design of a ferrite loop antenna for energy harvesting from a
MWs transmitter. Measurement results obtained using a prototype
device are used to support our findings.

In the remainder of this paper, we review RF energy harvesting
technologies and their principle of operation. We then introduce
our recent work on such a device that harvests energy from
ambient MW signals. Finally, we summarise and conclude our paper.

2 RF energy harvesting

We have developed an innovative energy harvesting technology
which uses a compact antenna to harvest enough energy from
ambient radio waves to power electronic devices such as wireless
sensor nodes and smart meters [3]. Compared with other energy
harvesting techniques, harvesting energy from radio waves has
the advantage in that it does not rely on light, movement or heat
so long as there is sufficient coverage of the target transmission.
Coverage is determined by the:

e transmitted power, frequency, transmitter antenna, receiver
antenna and distance from the transmitter (i.e. Friis equation).

e physical environment between the transmitter and device, that is,
path loss.

e design of the device itself, that is, antenna efficiency, circuit
efficiency and power requirements.
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The challenge is to identify radio signals that provide sufficient
coverage, and then to design a highly efficient energy harvesting
device that is compact and delivers enough power for the target
application.

Intel conducted an experiment that demonstrated harvesting
power from TV signals to power a digital thermometer [4];
however, the apparatus required a Yagi antenna that is far from
compact. TV signals have also been investigated for powering
devices in [5]. Reference [6] reports a commercial device developed
by Powercast that requires a bespoke transmitter as the signal source
which must be no more than approximately 3 m from the user
equipment. Airenergy [7] reported a product for charging a
battery using power harvested from WiFi signals. However, ana-
lysis shows that the device must be no more than a few centimetres
from the WiFi access point, and even at these short distances it will
take many months to fully charge a mobile phone battery. Nokia has
developed an RF energy harvester that can supply 3-5mW of
power, which is not enough to power a mobile phone, but is
enough to power other lower-power electronic devices such as wire-
less sensor network nodes and clocks [8]. Reference [9] describes
an educational experiment that powers a clock from MW radio
signals and requires a 20 m wire ideally strung outside. In reference
[10], Sogorb et al. describe an experimental RF energy harvesting
system operating at 1.584 MHz and use an 8 m long ‘L’ antenna
to give 1.6 V and 8 pA. Similarly, in [11] Xie et al. investigated
a system operating in the same frequency band, but use a 10 m hori-
zontal wire antenna that gives 5 V and 6 pA. Sim et al. [12] report
the design of a patch antenna for outdoor RF energy harvesting
applications. Penella-Lopez and Gasulla-Forner [13] conducted a
city-wide RF survey and designed RF harvesters for operation in
the DTV, GSM900, GSM1800 and third-generation frequency
bands. Georgiadis et al. [14] describe a rectenna design method
that combines electromagnetic simulation and harmonic balance
analysis, and demonstrate it by designing and implementing a
2.45 GHz rectenna. Finally, Lui ef al. [15] report a device operating
at 2.45 GHz that gives 2 V at a range of 15 cm from the transmitter,
which is comparable with the device in [7], but with more realistic
operational expectations.

Our aim has been to seek a means of harvesting energy from
ambient radio signals with a compact antenna that can enjoy
better signal coverage than the devices reported in the prior art.
We have targeted MW transmissions because they are often trans-
mitted with very high power (up to 2 MW) and, compared with
those at higher frequencies, propagate very well over hills and
through urban conurbations. According to [16, 17], there are a
large number of MW broadcast transmitters dispersed around the
UK and the rest of Europe, which cover most of the major urban
conurbations. All of these transmitters can be considered as high
power, with RF power in excess of 150 kW and sometimes as
much as 2 MW. There are even more low-power MW transmitters
which we have omitted. We have identified a compact antenna and
our findings show there is sufficient energy to power wireless nodes
located up to 20 km from the transmitter [3]. In comparison with
our earlier work described in [3, 18, 19], we

e develop and describe in detail an optimisation model used to de-
termine the design of our antenna;

o extend our analytical model to include factors relating to rod per-
meability and coil self-resonant frequency (SRF); and

o measured performance for an experimental device to support our
modelling and optimisation work.

3 Principle of operation

Our RF energy harvester uses a ferrite loop antenna chosen because
it provides a compact solution at low frequencies such as MWs. It
consists of n turns of wire wound around a ferrite rod of coil
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Fig. 2 Principle of operation
a Schematic of a rod antenna
b Equivalent circuit of a rod antenna with a connected load

diameter D and length #;;, and which has an effective permeability
of ttegr (Fig. 2a). The equivalent circuit of the energy harvester con-
sists of a ferromagnetic loop antenna tuned with a capacitance C,
and a load connected across the capacitor (Fig. 2b). The open-
circuit voltage across the capacitor (V) at resonance is [20]

V., 1

V =17 — sourcciZQV (1)
c c“c Rs oC source

where /. and Z, are the currents through the capacity and capacitor
impedance, respectively, Q is the quality factor for the circuit at res-
onance, defined as

1 ol
T RwC R,

0 @
The induced voltage, Viouce, for a ferromagnetic loop antenna as-
suming the incident electric field strength E is given by [20, 21]

27 awD?

=—F—
Vsource A 4 n cos 0 (3)

By substituting (2) and (3) into (1) we obtain

2 wD?
Ve = OVource = QTETn cos 0 “4)
Q is the unloaded coil quality factor and L is the coil inductance.
Here, f is the carrier frequency, A is the wavelength, R, is the
antenna coil series resistance and 0 is the alignment angle with elec-
tric field. The antenna terminals are connected to the RF-DC con-

vertor circuitry and matched to maximise the available voltage.

3.1 Antenna inductance and effective permeability

The antenna inductance is given as [20]

L= nerlJ’effM’O (5)

coil

A is the cross-sectional area of the coil, i is the effective perme-
ability of ferrite rod that has relative permeability u, and y is an ab-
solute permeability. The effective permeability of core y.¢ depends
on two factors

(1) geometry and dimensions of the ferrite rod. For cylindrically
shaped rods, the permeability of the rod is given as

/J“r (6)

Ml’o =
Tt (s + 1) (D))’

(In(€r0/D){0.5 +0.7[1 — exp(—p, x 107°)]})

According to this expression, the permeability of the rod increases
with £,,¢/D ratio and peaks at £,,¢/D =20 [21] irrespective of the
rod diameter. Expression (8) is valid for rod antennas with £,,o/D
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ratio of between 2 and 100. Various modifications are possible in
the design of the antenna to improve the effective permeability.
These include changing the cylindrical shape of the rod to a hyper-
boloid or dumbbell [21]. In this work, we consider a ferrite rod
antenna that is cylindrical in shape, with the coil covering the
entire length of the rod.

(2) The placement of the coil along the ferrite rod. The explanation
of the physical phenomena is beyond the scope of this paper, but we
provide a short summary from [12]. As the ferrite rod is not a
perfect director of flux, some flux lines exit the rod closer from
the sides. As a result, these leakage flux lines will not pass
through all the turns of the coil, thus reducing the effective perme-
ability of the rod. Consequently, shorter coils concentrated in the
centre of the rod result in higher-effective rod permeability,
whereas coils spanning an entire length of the rod will have a lower-
effective rod permeability. To describe this behaviour, for a ferrite
rod length 7,4 and coil length Z_;, the effective permeability is

adjusted as [22, 23]
ZI'O
Meft = Mrod | Y] 4 (7)
v coil

3.2 Self-resonant frequency

Self-resonant frequency, fsrr, determines the upper limit of the op-
erating frequency for the coil as it is the highest frequency for which
the coil is inductive [24]. The self-resonance frequency depends on
its inductance L and parasitic capacitance Cpqras, and is therefore a
function of its physical dimensions

1

féRF =5 A
277\/ LCparas

Thus, for a given coil inductance and target SRF, the maximum
value of capacitance must be kept below

®)

1
Cox = 55— 9
max 412 fSZRF L ( )
For single layer coils, an approximate value of coil parasitic capaci-
tance can be computed using the model described in [25]

Couras = 1.366C, (10)

0" 0" T
Ctt = SOIt [m + C0t<7> — COt(E)i| (11)
0 = arccos(l - ln(dsde)> (12)

where C,, is the parasitic capacitance between adjacent turns of the
wire, d is the outer diameter of the wire including an insulator, d_ is
the diameter of the wire core (conductor), /; is the length of a single
turn of wire and &y is absolute permittivity. Thus, the coil parasitic

capacitance is a function of coil diameter, insulator thickness and a
diameter of the conducting part of the wire.

The values of self-capacitance predicted by the model have been
compared with the measured values and in an illustrative example
were shown to be within 17.2% [25]. We have constructed a
range of coils of different configurations shown in chronological
order in Fig. 3.

4 RF energy from MW transmitters

We assume the RF energy harvester is located at a distance d from
the MW transmitter. For operation in the MW band, E is computed
using the model described in [20] as follows. For an antenna with a
figure-of-merit (FM) and transmitted power, P,, the electric field, E,
at distance d can be given as

/7.

E=FM¥ 4 (13)

Here, A is the attenuation factor and depends on the distance from

the transmitter (d), carrier frequency (f') and the earths’ conductiv-

ity (o) and relative permittivity of the ground path (&,). This is given
as

2+0.3p o ]
A=_T00P e - 14
2+p+0.6p (sin 5°)y/ 5P exp(=5p/8)  (14)

where the auxiliary parameters, p and b° are defined as
p = (0.582df* cos b°) /o

b° =tan"! (M) (15)

180
The FM of an antenna, for a vertical monopole is given as

~ 60/1000(1 — cos Bh)
VR

where Ry and / are loop resistance and the height of the monopole,
respectively, and §=2x/A is a phase change coefficient. Equations
(1)—~(5) present us with an analytical means for determining the
RF power harvesting performance when coupled with transmitter
and signal propagation parameters. As an illustration, Fig. 4a
shows the energy available from a MW transmitter that emits
150 kW of RF power at 1 MHz and harvested by an ideal ferrite
rod antenna. We assume o=1 mS and & =3 [23], an antenna con-
structed of 200 turns of silk-covered 0.07 mm diameter litz wire
wound around an insulator tube with a diameter of 10 mm and
length 200 mm. The insulator is placed around a ferrite rod with
a relative permeability of 300, and hence an effective permeability
of 10. With the device aligned to maximise the resulting induced
voltage, this yields an alternating voltage reducing from 2.6 to
0.3 mV across the open-circuit terminals of the windings as the dis-
tance from transmitter increases to 100 km. Fig. 4a shows how the
power into the 1 kQ load diminishes from 3.5 mW down to 55 pW
as distance increases. Fig. 4b shows the dependency of generated
voltage on Z,,4/D ratio for different core diameters, D. Device

FM

(16)

Fig. 3 Early antenna prototypes
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performance depends on many different factors, including antenna
geometry, dimensions, number of turns and the type of wire.
Simulations have shown that the effective permeability of the
antenna is the dominant factor in determining the optimal configur-
ation. A peak in open-circuit voltage occurs at £ ,q/D =20 (for all
values of D), which corresponds to configurations with maximum
values of effective rod permeability.

In the next section, we consider the optimisation of antenna para-
meters, where we confirm these findings, and impose some more
realistic constraints. An optimisation takes into account SRF, effect-
ive permeability and wire characteristics.

5 Antenna design optimisation

5.1 Optimising antenna design

Design requirements may be achieved through many different com-
binations of antenna parameters. For example, the same output
voltage can be produced by a short and wide coil with high
number of turns, or long and thin coil, which benefits from a higher-
effective permeability, and thus fewer turns. Each configuration will
have a different cost in terms of materials. The goal of the optimisa-
tion is to minimise the antenna cost function while providing a
target output voltage Virger, target output power Pqe; and satisfy-
ing constraints on physical dimensions (Dpin, Dmaxs fmin a0d Lnax),
SRF fsgr and Q factor. The optimisation procedure searches
through the parameter space for the configuration that has the
lowest cost while satisfying the design constraints. We define the
objective function F(l..;, D, s), as a function of coil length (/.0;),
coil diameter (D) and wire length (s). The optimisation problem
is then formulated as follows

2

. wD
mlnF(Zcoil’ D’ S) = Tlcoilpf + SPW + lcoilPl (17)
s.t. Pload z Ptarget’ Vloaded = Vtargev Q = Qmax (18)
Doin <D <D
lmin < lcoil < lmax (19)
2D < I, < 100D
J%RF < FSRF_MAX (20)

The terms in (17) represent the ferrite and wire costs, coil length and
diameter, respectively. Prand Py, are the costs of ferrite and wire per
unit volume and per unit length, respectively. P; and Pp are the
penalty coefficients for length and diameter of the antenna to tune
the optimisation process. If the antenna needs to be fitted within
an enclosure of a certain size, for example, increasing the penalty
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factor for coil length P, will drive the optimisation towards config-
urations with shorter coils. For RF energy harvesting applications,
one design objective is also to control the bandwidth of the
antenna, for example, to tune to a certain narrow band signal.
This can be done by controlling the Q. constraint, which also
impacts several other design parameters of the coil and rod. The
coefficients are set to zero if there are no specific requirements
for antenna dimensions.

The proposed optimisation approach takes into account key
design factors including the effective permeability of the ferrite
rod, parasitic capacitance and the SRF. The effective permeability
of the rod is computed using (6) given ferrite rod dimensions
(leon X D). Here, the coil and rod dimensions are assumed to be
the same; modifying the approach for different coil and rod dimen-
sions is straightforward. The SRF for the coil, fsrF, is given by (8)
and a model for parasitic capacitance of single layer coils given by
(10-12).

To reduce skin and proximity effects present at RF frequencies, a
litz wire, which consists of a number of fine electrically isolated
strands, is assumed to be used in the coil construction. We
compute the resistance of a coil comprising litz wire, R, by dividing
the total resistance of wire by the number of strands

Rtotal

N,

str

R (2]

where p and d are the relative resistivity of copper and the diameter
of a strand, respectively. The variable s represents the total length of
all strands. The number of strands, Ny, in a litz wire is provided
as an input parameter and will be discussed in more detail in
Section 6. The number of turns of wire, n, needed to compute
coil inductance (5), is expressed through a total wire length, s and
coil diameter, D

S
n—=
7DN,

str

(22)

The open-circuit voltage generated by the antenna is described by (1).
The loaded voltage will depend on the value of Z,,4 and is
computed using the voltage divider rule [23]

V Zload

Viontoa = 52 lond (23)
S Zeoit + Zioad
The power delivered to the load is computed as
VaiZ
P]oad — out“load - (24)
(Zooit + Zioaa)
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where Z.,i1 = Reoit T joL is coil impedance. Zj,q is the input imped-
ance of the RF-DC convertor circuitry and is provided as an input
parameter. Delivering maximum power to the load requires conju-
gate matching of the load, and will be discussed in more detail in
Section 6. 7 is the efficiency of the RF-DC conversion circuit and
is assumed for this example to be 50% as reported in reference [13].
In practice, the value of 7 is a function of the incident voltage.

6 Design case study

We use the above method to find an optimal configuration for a
ferrite rod antenna to harvest energy from a BBC Radio 5 transmit-
ter located in Brooksman Park, UK, at a range of distances from
1 to 15 km. The transmitter emits 150 kW of RF power at 909
kHz. The energy harvester is required to deliver 1 mW of power
to a 1 kQ resistor, have 50% power efficiency and have a 1 V
voltage across the load. These parameters are indicative of the
power requirements for smart meters. The load capacitance is
assumed to be matched to the energy harvester. The ferrite rod
and coil dimensions are assumed to be equal, that is, the coil
spans the entire length of the ferrite rod, and the insulator tube
thickness around the rod is negligible. The energy harvester is
assumed to drive a 1 kQ resistor, have 50% power efficiency and
require a 0.3 V start-up voltage.

Table 2 contains the rest of the design parameters. The optimisa-
tion model was implemented and simulated using the sequential
quadratic programming algorithm in the MATLAB R2012 opti-
misation toolbox. The objective function, f, is convex as its
Hessian matrix, H, is positive semi-definite [26]. The Hessian
H(f) of the objective function (17) and the eigenvalues, A, of the
Hessian are given below (derivation is in the appendix)

0 wD/2 0
H(f)= wD/2 . ;/2 0 0
0 0 0
TI'Z il a 12 il V) 12
_ eoil 7 Peoil
A= 4 2 ( 4 +D )
1/2
et | T Zczsoil 2
: +2(2 D

The eigenvalues A of the Hessian matrix are non-negative for
l.oit <1 m, so the matrix is positive semi-definite [26]. For convex
functions, a local minimiser is also a global minimiser [27]. The
constraint function results in a fourth degree polynomial, for
which a convexity test is complicated. For this reason to obtain
a global minimum, we used a heuristic approach together with a
number of start points, with one of the start points leading to a
global minimum. The convergence of the solutions was then
checked by plotting the best function value and the number of itera-
tions (Fig. 5). Fig. 5 shows the best function value achieved by each
local solver, and the total number of function evaluations for one set
of design parameters. The start points were randomly generated
within the problem constraints (Table 1) and solved using local
solvers.

Table 1 Design parameters

Best Function value: 40.85
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Fig. 5 Best objective function value and number of evaluations against
local solver call

Table 2 and Fig. 6 show the optimum antenna configuration and
cost as a function of distance from the transmitter. Each point on the
graph in Fig. 6 represents the cost of an optimal antenna configur-
ation for each distance. Note that for each distance, an optimum
antenna design is determined. Consequently, as the signal strength
diminishes with distance, more turns are required in order to main-
tain performance. As a result, the SRF reduces, as can be seen by
the curve. For distances larger than 8.5 km, the SRF falls below
the transmitter frequency thus making performance impossible to
maintain in practice.

Table 2 shows that the optimal rod dimensions are the same for
all transmitter distances (i.e. 0.20 x 0.01 m?), and the antenna con-
figurations differ in the length of wire and the number of turns. The
optimisation process selects the smallest possible rod dimension
that provides the maximum effective permeability of the rod
(which reaches its maximum at ¢,,¢/D~20, see Fig. 4b). The
required target voltage is achieved through varying the number of
turns and the length of wire. This behaviour is also consistent
with the model. By substituting (21), (22) into (1), we obtain
(25), which suggests that for a given D/I ratio, the coil open-circuit
voltage is a function of the length of wire

E/ D

p-T/E <—) s (25)
4)‘p lcoil

The rod dimensions are sensitive to ferrite cost and coil Q factor.

Consequently, the cost of ferrite yields antennas with smaller

(shorter) rods with more wire (more turns). The constraint on the

Design parameter, units Values Design parameter, units Values Design parameter, units Values
Vous V 1.0 P, £/m 0.08 transmitter power 150 kW
Uy, Hm™! 300 Pg, £/m® 412 distance from the transmitter 1.15km
d, m 0.07x 1073 P, Qm 1.68x107° load resistance 1kQ
Dinins Imin, M 0.01 Dinaxs Lmax, M 0.6 converter efficiency 50%
do, m 5.55x107* de, m 6x107* start-up voltage 03V
o, Fim 8.85x 107" & 35
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Table 2 Optimal antenna configurations for distances 1-15 km

Distances, km I, m D, m s, m n L H Distances, km Lm D, m s, m n L H

1 0.2 0.01 67 48 1.325%107* 9 0.2 0.01 457 323 6.100 x 1073
2 0.2 0.01 110 78 3.556x 107 10 0.2 0.01 511 361 7.613%x 1073
3 0.2 0.01 155 110 7.010 x 107 11 0.2 0.01 565 399 9.314x1073
4 0.2 0.01 202 143 1.190 x 1073 12 0.2 0.01 619 438 1.121x1072
5 0.2 0.01 251 177 1.835x 1073 13 0.2 0.01 675 477 1.330x 1072
6 0.2 0.01 301 213 2.643 %1073 14 0.2 0.01 731 517 1.560 x 1072
7 0.2 0.01 352 249 3.620x 1073 15 0.2 0.01 787 557 1.811x1072
8 0.2 0.01 404 286 4771 %1073

maximum value of Q factor drives the optimisation towards solu-
tions with lower coil inductance and consequently requires longer
wire to maintain the same level of output voltage. The inductance
is reduced by increasing the diameter of the coil. Note that induct-
ance can also be reduced by shortening the rod while keeping the
original diameter; yet, the results indicate that increasing the diam-
eter results in a lower cost than shortening the rod.

6.1 Self-resonant frequency

Fig 7 shows the SRF of antenna configurations from the results
obtained in the previous exercise (Table 3). At larger distances,

5e406

T
20406  Je+06  de+06

T
1e+06

T T T T
2 4 (=] 8 10 12 14
Distance, km

Fig. 6 Antenna cost and performance against distance, 45 strands

SRF, Hz

Oe+00 1e+06 2e+06 3e+06 4e+06 5e+06 Be+06

Distance, km
a

Fig. 7 Antenna cost and performance for different wire configurations
a SRF against distance, 15 and 60 strands
b Cost against distance, 15 and 60 strands
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SRF, Hz

producing the required level of voltage and power requires higher
inductance. The problem is that the higher inductance reduces the
SRF, which becomes a major limiting factor. Increasing the operat-
ing range of the energy harvesting device requires reducing either
inductance or parasitic capacitance of a coil.

6.2 Number of strands in litz wire

Litz wire is used in RF applications to reduce skin and proximity
effects associated with high-frequency currents. It consists of a
number of strands, and has a lower resistance to high-frequency
current. An interesting design question is whether to use shorter
wire with more strands or longer wire with fewer strands. The
first option would result in fewer turns, but lower internal resistance,
lower losses within the coil and therefore higher efficiency. On the
other hand, the second option would result in more turns, and con-
sequently higher voltage and output power.

To investigate the impact of number of litz wire strands on
antenna performance, we have repeated the experiment with the
same transmitter, but for different litz wire configurations.
Figs. 7a and b show the antenna SRF performance and cost for a
litz wire with 15 and 60 strands. They show that the configurations
with lower number of strands result in lower cost, but also lower
SRF. It can also be observed that reducing the number of strands
increases coil inductance. Intuitively, reducing the number of
strands result in higher coil resistance, so a higher number of
turns (and therefore inductance) is required to provide the target
output power and voltage. With reference to Fig. 7a, the
maximum operating distance as a result of the antenna SRF when
using litz wire of 15 and 60 strands is 4.9 and 9 km, respectively.
Therefore, increasing the number of strands can also be used as a
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Fig. 8 Experimental RF energy harvester
a Powering an LCD clock from RF energy
b RF-DC conversion circuit

way to moderately increase the operating range of the antenna. It
should be possible to add Ny, the number of strands, to the list
of design variables, and obtain it automatically through an opti-
misation process. The authors have experimented with this and
obtained positive results, to be reported later.

This case study has demonstrated how the proposed optimisation
method can be used to explore various design options of the
antenna, as well as to identify some key limitations regarding the
cost, the SRF and the operating range of RF energy harvesting
devices. It has enabled us to obtain the optimal design of an RF
energy harvester as given in Table 3.

7 RF-DC conversion circuit

We have constructed a device able to power a liquid crystal display
(LCD) digital clock from 909 kHz MW broadcast signals, at a dis-
tance from 2.4 km from the Brookmans Park transmitter, as shown
in Fig. 8a. The clock requires 1 V DC to operate, and draws 3 pA.
The DC is derived from the RF signal by means of a rectifier-
multiplier circuit [13] and is shown in Fig. 8b. Schottky diodes
have been selected because of their lower switch-on voltage com-
pared with silicon diodes. We have also conducted a set of experi-
ments to measure the amount of power available from the
Brookmans Park transmitter at a range of distances. The measure-
ments showed RF voltage levels 3 mV—3 V across 10 kQ load
and power levels of —3 to 34 dBm for distances from 2.4 to
14.4 km. The voltage levels at a distance of 0.8 km exceeded 3 V.

8 Discussion

Wireless sensor networks require energy for sensing, processing and
transmitting data to a remote data collector. Smart meters may also
require energy for displaying the information on an LCD screen, up-
dating tariffs and actuating a shutoff valve (e.g. in case of abnormal
gas or water pressure, accident, or an earthquake). Communication
cost dominates the energy budget of a typical sensing application
and depends on data generation interval, number of hops and
network configuration. However, in low data-rate delay tolerant
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applications, such as smart metering, operation at ultra-low duty
cycles of 0.1-0.2% is possible, which for a typical sensor node
[28] translates into 78—138 uW of power. Sensor power require-
ments range from a few microwatts for temperature and humidity
sensors to hundreds of microwatts for flow meters used in gas,
water and heat sensors. When describing typical battery require-
ments for a metering function, Dittrich [29] specifies 5.12 mW as
the average power consumption for an ultrasound gas meter.

Our proposed system provides at least 1 mW of power at a dis-
tance of 9 km from the transmitter; sufficient to operate a wireless
sensor node such as Tmote Sky [28] at 1.7% duty-cycle. The pro-
posed system can also be used in smart meters or any other electric
appliances that are powered from the mains, but require a backup
source of power for keeping real-time clocks or other critical func-
tionality during power outages. More power becomes available by
positioning the device closer to the transmitter.

9  Conclusions

In this paper, we have presented a system for RF energy harvesting
from MW transmitters and proposed a design optimisation approach.
The method was used to generate optimal antenna configurations for
distances of up to 15km. The analysis shows that the proposed
design is able to deliver 1 mW of power to 1 kQ load at a distance
of up to 9 km from a 150 kW transmitter. The maximum power
for a certain distance is fundamentally limited by the self-resonance
frequency of antenna. The latter can be reduced by increasing the
number of strands in the litz wire to reduce the self-capacitance of
the coil. This however increases the cost of the antenna as shown
by the analysis. The costs can be reduced by applying economies
of scale because of the market potential of the devices. The proposed
design has great potential for powering smart meters from MW trans-
mitters and to eliminate the need for replacing or recharging the bat-
teries, significantly reducing the maintenance costs. Potential future
work includes further experimental validation of the approach and
introducing additional factors into the design process to enable a
direct comparison between experimental and modelled performance.
These facts are: conversion efficiency 7 and rod topology.
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Appendix

Derivation of Hessian Matrix, H. The matrix is obtained by taking
second-order partial derivatives of the objective function
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