616 research outputs found
Direct observation of the current oscillation in a dc SQUID
学術論文 (Article)journal articl
NMR and NQR study of pressure-induced superconductivity and the origin of critical-temperature enhancement in the spin-ladder cuprate SrCaCuO
Pressure-induced superconductivity was studied for a spin-ladder cuprate
SrCaCuO using nuclear magnetic resonance (NMR) under
pressures up to the optimal pressure 3.8 GPa. Pressure application leads to a
transitional change from a spin-gapped state to a Fermi-liquid state at
temperatures higher than . The relaxation rate shows
activated-type behavior at an onset pressure, whereas Korringa-like behavior
becomes predominant at the optimal pressure, suggesting that an increase in the
density of states (DOS) at the Fermi energy leads to enhancement of .
Nuclear quadrupole resonance (NQR) spectra suggest that pressure application
causes transfer of holes from the chain to the ladder sites. The transfer of
holes increases DOS below the optimal pressure. A dome-shaped versus
pressure curve arises from naive balance between the transfer of holes and
broadening of the band width
The degree of aqueous alteration of nine CM chondrites estimated from mineralogy and chemical variations of matrix.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Vortex reflection at boundaries of Josephson-junction arrays
We study the propagation properties of a single vortex in square
Josephson-junction arrays (JJA) with free boundaries and subject to an applied
dc current. We model the dynamics of the JJA by the resistively and
capacitively shunted junction (RCSJ) equations. For zero Stewart-McCumber
parameter we find that the vortex always escapes from the array when
it gets to the boundary. For and for low currents we find
that the vortex escapes, while for larger currents the vortex is reflected as
an antivortex at one edge and the antivortex as a vortex at the other, leading
to a stationary oscillatory state and to a non-zero time-averaged voltage. The
escape and the reflection of a vortex at the array edges are qualitatively
explained in terms of a coarse-grained model of a vortex interacting
logarithmically with its image. We also discuss the case when the free
boundaries are at degrees with respect to the direction of the vortex
motion. Finally, we discuss the effect of self-induced magnetic fields by
taking into account the full-range inductance matrix of the array, and find
qualitatively equivalent results.Comment: 14 pages RevTex, 9 Postscript figure
Macroscopic Quantum Tunneling of a Fluxon in a Long Josephson Junction
Macroscopic quantum tunneling (MQT) for a single fluxon moving along a long
Josephson junction is studied theoretically. To introduce a fluxon-pinning
force, we consider inhomogeneities made by modifying thickness of an insulating
layer locally. Two different situations are studied: one is the quantum
tunneling from a metastable state caused by a single inhomogeneity, and the
other is the quantum tunneling in a two-state system made by two
inhomogeneities. In the quantum tunneling from a metastable state, the decay
rate is estimated within the WKB approximation. Dissipation effects on a fluxon
dynamics are taken into account by the Caldeira-Leggett theory. We propose a
device to observe quantum tunneling of a fluxon experimentally. Required
experimental resolutions to observe MQT of a fluxon seem attainable within the
presently available micro-fabrication technique. For the two-state system, we
study quantum resonance between two stable states, i.e., macroscopic quantum
coherence (MQC). From the estimate for dissipation coefficients due to
quasiparticle tunneling, the observation of MQC appears to be possible within
the Caldeira-Leggett theory.Comment: 30 pages LaTeX including 11 PS figures, using jpsj.sty. To be
published on J. Phys. Soc. Jpn. Overestimates for damping amplitude is
correcte
Direct optical excitation of two and three magnons in α-Fe₂O₃
Direct excitation of two and three magnons is observed in midinfrared absorption and Raman
scattering spectra of α-Fe₂O₃ crystals. These polarization characteristics and the spectra themselves
are shown to be understood from group-theoretical point of view. The microscopic mechanism
of three-magnon excitation is proposed in addition to that of well-known two-magnon excitation
process
- …