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We study the propagation properties of a single vortex in square Josephson-junction arrays~JJA! with free
boundaries and subjected to an applied dc current. We model the dynamics of the JJA by the resistively and
capacitively shunted junction equations. For zero Stewart-McCumber parameterbc we find that the vortex
always escapes from the array when it gets to the boundary. Forbc>2.5 and for low currents we find that the
vortex escapes, while for larger currents the vortex is reflected as an antivortex at one edge and the antivortex
as a vortex at the other, leading to a stationary vortex oscillatory state and to a nonzero time-averaged voltage.
The escape and the reflection of a vortex at the array edges is qualitatively explained in terms of a coarse-
grained model of a vortex interacting logarithmically with its image. Forbc>50 we find that the reflection
regime is split up in two disconnected regimes separated by a second vortex escape regime. When considering
an explicit vortex-antivortex pair in an array with periodic boundaries, we find a solitonlike nondestructive
collision in virtually the same current regimes as where we find reflection of a single vortex at a free boundary;
outside these current regimes the pair annihilates. We also discuss the case when the free boundaries are at
45° with respect to the current direction, and thus the angle of incidence of the vortex to the boundaries is
45°. Finally, we study the effect of self-induced magnetic fields~for penetration depths ranging from 10 to 0.3
times the lattice spacing! by taking into account the full-range inductance matrix of the array and find quali-
tatively equivalent results. We also discuss possible consequences of these results to experimental systems.

I. INTRODUCTION

In recent years the viscous motion of a single vortex in
two-dimensional Josephson-junction arrays~JJA’s! has been
studied numerically by several authors.1–7 In these studies
the I -V characteristics were calculated for JJA’s with peri-
odic boundary conditions perpendicular to the direction of
the applied dc current. Apart from the vortex viscosity, the
nature of its predicted mass8–14 has attracted significant in-
terest, also experimentally.15,16 van der Zantet al. reported
experimental evidence for ballistic motion of vortices in a
current-free region in a highly underdamped Josephson-
junction array.15

An interesting aspect of this problem, which is relevant to
experiments such as those in Ref. 15, but that has not yet
been studied systematically, is the influence of boundaries on
the vortex motion. Experimentally one may distinguish two
types of boundaries~see, e.g., Ref. 15!: Either the junctions
at the edge are connected to a superconducting busbar or
they are not~free boundary!. The influence of the boundary
on a vortex due to the busbar geometry can be described by
an image vortex of the same sign, equidistant on the other
side of the boundary; in the free boundary case the image of
the vortex is of opposite sign. The latter situation is to some
extent analogous to that of a soliton in a continuous long
Josephson junction~LJJ!.17–19

The goal of this paper is to study the reflection, transmis-
sion, and annihilation properties of vortices in JJA’s with free

boundaries. Here, we report simulations of dc-biased arrays
with free boundaries, in zero applied magnetic field. For ev-
ery bias current considered we use the same initial phase
configuration with one vortex in the middle of the array. We
study the dynamical interaction of the vortex with the free
boundary as it moves towards it for bias currents above the
depinning threshold. The vortex-boundary interaction is
equivalent to the effect of an image antivortex at equal dis-
tance on the other side of the boundary. A vortex and an
antivortex interact logarithmically~at sufficiently large dis-
tances!, and so the same holds for a vortex and a free bound-
ary. The total effective vortex potential is the sum of the
interaction potential and the periodic lattice pinning poten-
tial. The Lorentz force on the vortex due to the applied bias
current corresponds to a tilt of this effective potential. Below
we will see this more explicitly when we discuss the coarse-
grained model equations for the vortex dynamics.

The outline of this paper is the following. In Sec. II we
define the model equations studied in this paper. There we
consider the extreme type-II limit~infinite penetration depth!
as well as the case of finite penetration depth. We also dis-
cuss the coarse-grained vortex equations which are used to
analyze the results later in the paper. In Sec. III A we present
results in the extreme type-II regime and in Sec. III B the
results for finite magnetic penetration depth. In Sec. IV we
analyze the results from Sec. III A in terms of the coarse-
grained, phenomenological vortex equations including the
interaction of the vortex with the free boundaries. In Sec. V
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we present results for a vortex moving in diagonal JJA’s.
Section VI contains a summary of our results and some con-
clusions.

II. MODEL EQUATIONS

In JJA’s vortices are represented by patterns of eddy cur-
rent around a plaquette. We consider dc-biased JJA’s in the
classical regime defined byEJ@Ec5e2/2C, whereEJ is the
Josephson coupling energy andEc the characteristic charging
energy of a junction,e the electron charge, andC the mutual
capacitance of the junctions. In this case, and in zero applied
magnetic field, the individual junctions in the JJA’s can be
modeled by the resistively and capacitively shunted junction
~RCSJ! model,20 defined by the total bond currenti (r ,r 8)
between nearest neighbor sitesr and r 8 as

i ~r ,r 8!5bcü~r ,r 8!1 u̇~r ,r 8!1sin@u~r ,r 8!#. ~1!

Here the dots represent time derivatives. The three contribu-
tions to i (r ,r 8) are the displacement, the dissipative, and the
superconducting currents, respectively. The phase difference
across a junction isu(r ,r 8)[u(r )2u(r 8). The currents are
expressed in units of the junction critical currentI c ; time is
measured in units of the characteristic time
1/vc5\/(2eRnI c), bc5(vc /vp)

2 is the Stewart-
McCumber damping parameter,20 with the plasma frequency
vp defined asvp

252eIc /\C, and Rn is the junction’s
normal-state resistance. The RCSJ model has a limitation. It
does not take into account that the resistance of a real Jo-
sephson junction with highbc is voltage dependent: For
voltages below the gap voltage the effective resistance is
determined by the quasiparticle resistance, which can be or-
ders of magnitude larger than the normal-state resistance.15

In Fig. 1 we show the geometry of the square array to
which most of the results discussed in this paper apply. Each
superconducting island is connected to four neighbor islands
via identical Josephson junctions. The bias current is fed in
at the lower boundary and taken out at the upper boundary.

When we neglect the self-induced magnetic field pro-
duced by the current flowing in the array~infinite magnetic
penetration depthl), the array dynamics is described by Eq.
~1!, together with Kirchhoff’s current conservation condition

(
a
i ~r ,r1a!5 i ext~r !, ~2!

imposed at every islandr ~the summation is over all nearest
neighbor islandsr1a). We integrate the coupled equations
~1! and ~2! using a fast algorithm discussed in Ref. 21.

When we include the self-induced fields, thus including
screening effects, we redefineu(r ,r 8) in ~1! to be the gauge-
invariant phase difference across a junction:u(r ,r 8)
[u(r )2u(r 8)22pA(r ,r 8). The bond frustration variable
A(r ,r 8) is defined by the line integral of the vector potential
A:

A~r ,r 8!5
1

F0
E
r

r8
A•dl, ~3!

whereF05hc/2e is the elementary flux quantum. The vec-
tor potential is time dependent, as is the total magnetic flux
F(R,t) at plaquetteR:

F~R,t !

F0
5 (
P ~R!

A~r ,r 8,t !. ~4!

Here P (R) denotes a counterclockwise sum around the
plaquetteR. The time-dependent magnetic flux is induced by
all the currents flowing in the array via the Faraday-Ampe`re
laws. In zero external magnetic field, we may write

F~R,t !5(
r ,a

G~R,r ,a!i ~r ,r1a,t !. ~5!

G is a matrix that explicitly depends on the geometry of the
array and the junctions. The standard inductance matrix is
then given by the discrete curl ofG. As discussed in more
detail in Ref. 22, in the linearized approximation the strength
of the self-induced fields is governed by the perpendicular
magnetic penetration depth

l5
F0

2pI cm0
~6!

or equivalently by thek parameter,

k5
l

a
5

vF

vc
, ~7!

wherevF5Rn /(m0a) andm0 is the vacuum magnetic per-
meability. We set the lattice constanta equal to unity and use
the parameterl to indicate the degree of screening.

In our calculations we use the full-range inductance ma-
trix ~‘‘model C’’ in Ref. 22!. The inductance matrix elements

FIG. 1. Square array geometry used in the simulations, illus-
trated with a 838 array. Junctions are denoted as crossed bonds.
Free boundary conditions are imposed in both directions, while the
current bias is applied along they direction.
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are computed using the model approximations discussed in
Ref. 22. After choosing the temporal gauge, Eqs.~1!–~5! can
be combined into one~vector! equation that governs the
complete dynamics~see Ref. 22!.

The vorticityn(R) of a plaquetteR is defined as

2pn~R!52pF~R!1 (
P ~R!

@u~r !2u~r 8!22pA~r ,r 8!#.

~8!

Here the gauge-invariant phase differenceu(r )2u(r 8)
22pA(r ,r 8) is taken between2p and1p.

We would like to model the vortex motion in the array by
a coarse-grained equation of motion as in the Bardeen-
Stephen model for flux flow in continuous superconductors.
The dissipative currents in the junctions, modeled in Eq.~1!
by currents through Ohmic shunt resistors, give rise to a
viscous force on a moving vortex. Furthermore, in capacitive
arrays (bc.0), the electromagnetic energy stored in the
junction capacitors due to the vortex motion can be inter-
preted as the kinetic energy of a massive vortex.9–14,23For an
infinite array, and for infinite magnetic penetration depth, a
coarse-grained model equation in terms of a single continu-
ous vortex coordinatex reads:

Mẍ1h ẋ5 i b1 i dsin~2px!, ~9!

whereM5pbc and h5p for a square array.9–14,23 This
equation describes the vortex as a point particle with massM
that, driven by a~Lorentz! force proportional toi b , moves
through a sinusoidal pinning potential and experiences a vis-
cous damping force with constant viscosity coefficienth. An
estimate fori d in a square lattice givesi d'0.10.24 In a pre-
vious paper,5 we have deduced an alternative phenomeno-
logical vortex equation of motion with a velocity-dependent
vortex viscosity. In contrast to the model with constant vis-
cosity given in Eq.~9!, the nonlinear model gives a qualita-
tively correct account of the numerical results for the
current-voltage characteristics calculated using the full set of
equations~1!. The equation reads

M ~bc!ẍ1
A~bc!

11B~bc!ẋ
ẋ5 i b1 i dsin~2px!. ~10!

Here the phenomenological constantsA, B, andM are found
to be weakly dependent onbc .

In the model equations~9! or ~10! the vortex dynamics is
described in terms of a single particle with coordinatex. In
writing these equations we assume that, as the vortex moves,
it does not couple to other excitations in the array. As a
result, it is assumed that the electromagnetic energy associ-
ated with the moving vortex, and interpreted as its kinetic
energy, can only be absorbed by the viscous medium and not
transmitted to other dissipative modes in the array. The lim-
ited validity of this assumption is apparent for example from
numerical simulations,1,2,4 where no ballistic vortex motion
was found when switching off the bias current. Furthermore,
it was found in experiments16 and simulations that the vortex
viscosity does not decrease as 1/Rn when increasingRn . The
nonzero vortex viscosity in the underdamped limit was un-
derstood in terms of the coupling of the moving vortex to
charge oscillations~‘‘spin waves’’!.2,7,14,16

For a finite array, an extra position-dependent force due to
the vortex-boundary interaction should enter at the right-
hand side of these equations:

Mẍ1h ẋ5 i b1 i dsin~2px!2F~x! ~11!

and

M ~bc!ẍ1
A~bc!

11B~bc!ẋ
ẋ5 i b1 i dsin~2px!2F~x!. ~12!

To compute this force, one has to take into account all the
infinitely many image vortices that are produced by the array
boundaries. When we take the origin at the left-hand side
boundary of the array, this leads to the following form of the
force:

F~x!52
d

dx
lnF2Lp sinS px

L D G . ~13!

In order to avoid the singularities at the boundaries in~13!,
we use a cutoff: For distances to the boundaries smaller than
half a lattice constant, we setF(x)50. Note that this cutoff
prescription fixes the maximum attractive force due to the
boundary on the vortex atF max5F( x5 1

2). In Ref. 13 it is
argued that the vortex mass increases close to a free bound-
ary. It was found that this increase is only noticeable within
one lattice constant from the boundary. We do not include
this quantitative correction in the models~11! and ~12!, as
the arbitrariness of the cutoff prescription already makes the
results only qualitative in nature.

III. RESULTS

A. l5`

In Fig. 2 we present a summary of the results for a
16316 square array withl5` for different values ofbc .
At the bottom we show the results of the simulations for
bc50, in which the vortex motion is purely viscous and the
vortex mass is zero. We have considered all current values
betweeni b50.0 andi b51.0, with a grid ofD i50.01. For

FIG. 2. Results for different values ofbc for a 16316 square
array with free boundaries. The dashed lines represent the current
ranges for which type-A behavior~vortex escapes from array! was
found. The thick lines denote the type-B ranges~trapped vortex
oscillating in the array! and the thin solid lines the row-switching
regimes.
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this system size the vortex depinning current is between
0.11 and 0.12, and so for currentsi b<0.11 the vortex is
pinned to the middle plaquette of the array, and for
i b>0.12 it is depinned~if one increases the system size the
depinning current will reach the valuei d50.10 estimated in
Ref. 24 for an infinite array!. When the vortex is depinned
and moves towards one of the free boundaries, the approach
to its image on the other side of the boundary causes it to
accelerate. When the vortex reaches the boundary, it leaves
the array, or, equivalently, it is annihilated by its image anti-
vortex. We denote this behavior as type A.

Above i b50.96 the bc50 dynamics loses its single-
vortex character after a short transient time, when additional
vortices are generated in other rows. In fact the measured
voltage is due to the motion of vortices in all rows. As we
want to focus on the single-vortex dynamics in this paper, we
will not go further into this type of motion here.

For nonzerobc , we started the simulations att50, in-
creasing the current linearly from zero toi b in oneRC time
of the junctions. The relaxational oscillations due to this in-
crease in the current decay while the vortex is moving to-
wards the boundary. We checked that the behavior at the
boundary is not seriously affected by these relaxational os-
cillations by comparing the results to those in a 32316 array.

Forbc52, the results for the vortex propagation are simi-
lar to thebc50 results. The only difference is that the re-
gime with type-A behavior now ends ati50.86 due to the
onset of row switching, which means that the vortex
switches one or more rows of longitudinal junctions~i.e.,
junctions in the current direction! into the resistive state.1–3,25

For bc>2.5 a current range opens up in which the vortex
is reflected as an antivortex at the boundary in the way a
soliton reflects in a long Josephson junction~LJJ!.17,18Alter-
natively, one may say that the vortex and its antivortex image
pass through each other, analogously to the nondestructive
soliton-antisoliton collisions in a LJJ.17,19 The antivortex in
turn is reflected at the opposite free boundary as a vortex.
This sequence repeats so that the vortex or antivortex never
escapes from the array, thus producing a nonzero time-
averaged voltage perpendicular to the vortex motion. We de-
note this as type B behavior. In a LJJ a similar type of soliton
motion gives rise to the first zero-field step.20Although there
are important differences between the properties of solitons
in a continuous junction and the properties of vortices in the
discrete array, it appears, in the regime considered here, that
their reflection properties at a boundary as well as their col-
lision properties are similar in many respects. For a two-
dimensional array of Josephson junctions the nondestructive
collision of a vortex-antivortex pair has been alluded to by
Nakajima and Sawada, in the context of a model including
the self-inductances of the plaquettes.26

In Fig. 3 we show the voltage versus current characteristic
for bc510. We note that for the calculation of this current-
voltage characteristic we use the same initial phase configu-
ration for all the bias currents considered. Above the vortex
depinning current, we start the calculation of the time-
averaged voltage only after a sufficiently long time interval
for the vortex to reach the boundary. As a result, in the case
of type-A behavior we measure no voltage, as there is no
dissipation after the vortex escapes from the array. In con-
trast, the type-B regime has a nonzero voltage. The current-

voltage characteristic has a considerable slope in this regime,
in contrast to the first zero-field step in a LJJ, which is much
flatter, due to the fact that the voltage is limited by the maxi-
mum soliton velocity. For even higher currents, we enter the
row-switching regime with a large voltage increase.

We interpret the type-B behavior as being the result of the
inertia, or kinetic energy, carried by the vortex. The attractive
interaction between the vortex and its image provides a po-
tential well from which the reflected antivortex has to escape
after the reflection and collision, in order to travel towards
the opposite boundary. The Lorentz force on the antivortex
due to the applied bias current is in itself not sufficient to
pull it out of the well. In addition, the vortex needs to have a
minimum kinetic energy in order to escape: This will be the
case if both the vortex massM5pbc as defined in Eq.~9!
and the vortex velocity~monotonically increasing withi b)
are sufficiently large. In Fig. 4 we show snapshots of the
vortex configurations at different times forbc510 and
i b50.49. In Fig. 5 we show the time-dependent voltage
across the array, indicating the times at which the snapshots
shown in Fig. 4 are taken. The large voltage fluctuations for
short times are due to the additive contributions of the relax-
ational oscillations of all the individual longitudinal junc-
tions in the array as the bias current is changed from zero to
0.49 in the time interval 0,t,10. Fort.100 these oscilla-
tions have relaxed sufficiently and the vortex contribution to
the voltage becomes dominant. As the vortex approaches the
boundary its velocity increases and so does the voltage. At
the reflection, the vortex velocity jumps from a maximal
value ~just before the reflection! to a minimal value~just
after the reflection!.

To verify the interpretation of the vortex reflection as a
nondestructive collision with the image antivortex, we have
investigated the collision properties of a vortex-antivortex
pair explicitly. This entails simulations of a 16332 square
array withperiodic boundary conditionsin the direction of
the vortex motion, with one vortex and one antivortex sepa-
rated by 16 lattice constants present in the initial phase con-
figuration. This situation is the explicit realization of the
image-vortex system corresponding to the 16316 array with
free boundaries and a single vortex. Below the row-

FIG. 3. Current-voltage characteristics forbc510, from simu-
lations of a 16316 square array with one vortex~solid line!. ^V& t is
the time-averaged voltage across the array in the current direction,
in units of I cRn and normalized by the number of longitudinal junc-
tions. The dashed line is theI -V characteristic computed from the
linear viscosity model~11!.
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switching threshold, we find that indeed the corresponding
vortex dynamics, i.e., destructive collision A8 and nonde-
structive collision B8, takes place. The transition between
the types A8 and B8 behavior is at a current value close to
the one between types A and B in the finite array with one
vortex, thus providing a phenomenological explanation of
the results.

For currents in the type-A8 regime close to B8, the de-
structive collisions become a two-stage process: First the
vortices collide nondestructively, drift three lattice constants

apart, and then fall back onto each other and annihilate. In
the LJJ-soliton language this is called a decaying breather
mode. In the finite array the corresponding process in the A
range~near to the B range! consists of a reflected antivortex
that falls back over the edge. We interpret this process as
evidence for a nonzero vortex mass: The vortex moves uphill
~in the potential landscape! until it reaches a turning point
where the kinetic energy is used up, and then falls back in
the potential well.

Whenbc increases, the lowest current resulting in type-B
behavior decreases, as shown in Fig. 2. The current for row
switching decreases as well, similar to thebc dependence of
the row-switching threshold in previous simulations with pe-
riodic boundary conditions.1–3,5 In the next section we will
interpret the type-A versus type-B behavior in terms of the
coarse-grained model equations given in Eqs.~11!–~13! of a
vortex interacting logarithmically with its image~s!.

For bc>50 we observe the sequence A→ B → A → B
as a function of bias current: the type-B regime splits up into
two pieces separated by a second type-A regime. The second
type-A regime is due to the presence of charge oscillations
on the shunt capacitors, which become larger in amplitude
for increasingbc . At the reflection, the vortex velocity be-
comes so large that additional dissipative modes in the array
are excited in the form of local charge oscillations on the
shunt capacitors. These oscillations interfere with the motion
of the antivortex, which as a result is slowed down and can-
not escape from the potential well. For higher currents, there
is a second B region. Here the antivortex has a higher veloc-
ity, and it is able to survive the coupling to the charge fluc-
tuations. The magnitude of the second A regime grows with
bc , and we have found that forbc5500 there are no B

FIG. 6. Snapshots of the vorticity distribution for a 16316 array
with free boundaries andi b50.65, with one positive vortex and one
antivortex moving in adjacent rows. The notation is as in Fig. 4.
Both vortices reflect at the edges~between frames 0 and 1!, and
collide constructively in the middle of the array~between 2 and 3!,
interchanging rows.

FIG. 4. Snapshots of the vorticity distribution Eq.~8! in a
16316 square array withbc510 and i b50.49, showing type-B
dynamics. In the frame labeled with 0 the vortex~black square[
vortex center plaquette! is moving towards the right free boundary.
After reflection it travels as an antivortex~white square! towards the
opposite boundary~frames 1 and 2!, where it is reflected again as a
positive vortex~frame 3!. The snapshots correspond to the instants
indicated in Fig. 5.

FIG. 5. Voltage, normalized as in Fig. 3, versus time across a
16316 square array with one vortex, forbc510 andi50.49. The
times labeled with 0 to 3 correspond to the respective snapshots
shown in Fig. 4.
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regimes left. We note that the breakup of the type-B regime
into two pieces and the disappearance of the reflection for
very low damping have no counterpart in the context of a
soliton moving in a LJJ.

One might ask if the collision can still be nondestructive
if the vortices collide along a direction that is not parallel to
one of the coordinate axes. We have simulated a finite
16316 square array withbc510 containing a vortex and an
antivortex that are inserted not in the same row but in adja-
cent rows. The results show a reduced but nonvanishing cur-
rent regime (0.63< i b<0.66) for reflections for both vortices
at the edges plus a ‘‘new’’ nondestructive collision in the
middle of the array, during which the vortices interchange
rows, as shown in Fig. 6.

B. Finite l regime

Thus far we have studied the reflection properties of the
vortex in an array with zero self-induced magnetic fields, or
equivalently, with magnetic penetration depthl much larger
than the array size. From the point of view of, for example,
arrays made of niobium junctions, in which the self-induced
magnetic fields are non-negligible,27 it is important to see
how these fields influence the reflection properties of a vor-
tex. We have therefore studied the vortex propagation in
16316 square arrays for a range ofl values atbc510 and
100. We find that the reflection still occurs for finitel. The
results are shown in Figs. 7 and 8. As discussed by Phillips
et al.,27 the vortex depinning current is enhanced by the self-
induced fields. For example, for our 16316 array with
l50.3 andbc5100 we find that the vortex depins for cur-
rents larger than or equal toi b50.38. Forbc510 and in the
type-II regime (l larger than a few lattice spacings! the
width and the position of the B regime is somewhat insensi-
tive to thel value as one can see in Fig. 7. As we see in Fig.
8 for bc5100, the second A regime shrinks with decreasing
l, and disappears forl,5. For l<1 ~type I! we find that
the B regime shrinks, both forbc510 andbc5100.

IV. COMPARISON WITH THE PHENOMENOLOGICAL
MODEL EQUATIONS

In this section we will make a qualitative comparison of
thel5` results presented in Sec. III with the results for the
vortex motion in a finite array based on Eqs.~11! and ~12!.

Naively, in Eq. ~13! the parameter range forx is

0<x<L. However, when the vortex reflects atx5L, the
positive image vortex of the reflected antivortex has a coor-
dinate x.L, and we can interpret the oscillating state
~type-B behavior! as the motion of a positive vortex through
the force fieldF(x), periodically extended to the complete
real axis. Type-A behavior then corresponds to trapping of
the vortex aroundx5L ~modulo L!. Starting fromx58 at
each current value considered, we calculated the current-
voltage characteristic numerically from Eqs.~11! and ~13!
for L515, using the cutoff prescription mentioned above.
The results forbc510 are shown as the dashed line in Fig. 3.
The model underestimates the threshold for type-B dynam-
ics. As this threshold is very sensitive to the type of cutoff
used, we cannot draw quantitative conclusions about the vor-
tex mass from this result.

We have determined the threshold currentsiA→B as a
function ofbc from the model equation~11!, as well as from
the same equation with the nonlinear friction term from Eq.
~12!. We find that the dependence of the A→B threshold
current onbc is qualitatively the same as found in the simu-
lations. In the models the decrease of the threshold value is
due to the increase in the mass parameterM52pbc , which
increases the vortex kinetic energy. The larger this kinetic
energy is, the easier it is for the vortex to escape from the
effective potential well.

We note that the way in which vortex inertia manifests
itself, and hence the~possible! attribution of a mass, depends
on the dynamical situation considered. In previous
simulations,1,2,4 in contrast to this work, the vortex mass was
probed by switching off the bias current. Changing the cur-
rent gives rise to enhanced local relaxational oscillations in
the junction phases near to the vortex center or, in other
words, to a coupling to other dissipative modes in the array.
Instead of allowing the vortex to continue its motion, the
electromagnetic energy stored in the capacitors then leads to
local oscillations. For largebc these force the vortex center
to oscillate back and forth a couple of times between two
adjacent plaquettes, as shown forbc52500 in Fig. 10 of
Ref. 2. During the decay of these oscillations the electromag-
netic energy is dissipated. The distance traveled by the vor-
tex after the current has been turned off is zero. Therefore the
mass attributed to the vortex in this situation is zero or very
small. Similarly, probing the vortex mass by looking at the
hysteresis in theI -V characteristics,3,5 which also involves
changes in the current bias, leads to zero or very small phe-

FIG. 8. Results for different values ofl for a 16316 square
array with free boundaries atbc5100. The notation is the same as
in Fig. 2.

FIG. 7. Results for different values ofl for a 16316 square
array with free boundaries atbc510. The notation is the same as in
Fig. 2.
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nomenological massM (bc) in ~10! for moderate values of
bc .

5

On the basis of the model interpretation, one would ex-
pect that, for some currents just below the transition to
type-B behavior, the reflected antivortex is not falling back
over the boundary, but it is retrapped by the lattice. This
retrapping is then the effect of the combination of the pin-
ning modulation of the effective potential and the energy loss
due to friction. We have looked for such a retrapping process
in the simulations forbc5100, and indeed found it for
i b50.2462 (16316 array!. The reflected antivortex is re-
trapped in the second plaquette from the boundary.

V. VORTEX REFLECTION IN DIAGONAL ARRAYS

An important question is how robust the vortex reflection
at a boundary~or the nondestructive collision of a vortex-
antivortex pair! is for other array geometries. We have stud-
ied the case in which the current is injected not along one of
the coordinate axes, but along the2x andy directions. See
Fig. 9, which shows a 15315 diagonal array, in which the
initial position of the vortex is indicated by an open circle.
The vortex will move at 45° to the boundary, due to the
diagonal current bias, which allows us to study the reflection
behavior for this angle of incidence. We also find solitonlike
reflection in this case, although the width of the current re-
gime is smaller, and vanishes again already at abc value
somewhere between 50 and 100. Although the vortex and its
image collide at an angle of 90°, the reflecting antivortex
still retraces the path of the incident vortex. This is basically
because the antivortex has to travel at right angles to the
applied bias current. An interesting question would then be

what happens for a reflection at zero current bias. To study
this within the setting of our model simulation, one would
need a nonzero current first to depin the vortex and then
switch the current off just before the reflection. However, it
is known1,2,4 that switching off the bias current is not fol-
lowed by a propagation of the vortex forbc in the range in
which we find vortex reflection. Therefore, switching off the
bias current just before the reflection does not seem to be an
option to study reflection at zero bias current.

VI. SUMMARY AND DISCUSSION

In conclusion, we have performed RCSJ-model simula-
tions of a finite Josephson-junction array containing a single
vortex in a dc current bias. For moderate damping, we find
current regimes where the vortex reflects at the boundary,
moving back as an antivortex towards the opposite boundary,
where the dual reflection process takes place, leading to a
stationary oscillatory state and a nonzero time-averaged volt-
age across the array. This oscillatory motion can be viewed
as a discrete analog of the bouncing of a soliton in an under-
damped long Josephson junction, which gives rise to the first
zero-field step.17 The long Josephson junction or Josephson
transmission line can be used as a vortex flow transistor or
oscillator in many different devices.28 Recently, van der Zant
and Orlando29 explored the possibility of using a discrete
one-dimensional~1D! parallel array of underdamped junc-
tions as a vortex flow transistor. Some time ago it has been
shown numerically30 as well as experimentally31,32 that vor-
tices in a 1D parallel Josephson array have solitonlike colli-
sion properties. Our results show that the solitonlike collision
and reflection also occur in two-dimensional arrays, and that
the first zero-field step has a discrete analog in JJA’s, which
suggests a possible use of the two-dimensional array as a
vortex-flow device. An important difference found with re-
spect to the soliton motion in LJJ for very low damping is
the fact that in the array the reflection is absent for values of
bc of the order of 500 and larger.19

When considering a vortex-antivortex pair in an array
with periodic conditions, the vortices collide nondestruc-
tively for appropriate bias currents. This is the behavior
equivalent to the reflection of one vortex at a free boundary.
Our numerical results can be interpreted in terms of a mac-
roscopic model equation for a massive vortex. We also stud-
ied the vortex propagation in a diagonal array where the
vortex has an angle of incidence of 45° to the boundary, and
found that, for appropriate bias currents, reflection takes
place here as well. Finally, we also studied the effect of
self-induced magnetic fields, using a model that takes into
account the full inductance matrix of the array, and found
that the same type of vortex reflection regimes as in the
l5` case is present for a range of values ofl andbc .
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FIG. 9. Diagonal array geometry used in the simulations, illus-
trated with a 15315 array. For clarity we omitted the crosses on the
bonds. In both directions free boundary conditions are imposed,
while the current bias is applied along a diagonal direction. The
open circle denotes the initial position of the vortex.
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