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Vortex reflection at boundaries of Josephson-junction arrays
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We study the propagation properties of a single vortex in square Josephson-junction Al#ygith free
boundaries and subjected to an applied dc current. We model the dynamics of the JJA by the resistively and
capacitively shunted junction equations. For zero Stewart-McCumber parafetee find that the vortex
always escapes from the array when it gets to the boundangBfeR.5 and for low currents we find that the
vortex escapes, while for larger currents the vortex is reflected as an antivortex at one edge and the antivortex
as a vortex at the other, leading to a stationary vortex oscillatory state and to a nonzero time-averaged voltage.
The escape and the reflection of a vortex at the array edges is qualitatively explained in terms of a coarse-
grained model of a vortex interacting logarithmically with its image. Bg=50 we find that the reflection
regime is split up in two disconnected regimes separated by a second vortex escape regime. When considering
an explicit vortex-antivortex pair in an array with periodic boundaries, we find a solitonlike nondestructive
collision in virtually the same current regimes as where we find reflection of a single vortex at a free boundary;
outside these current regimes the pair annihilates. We also discuss the case when the free boundaries are at
45° with respect to the current direction, and thus the angle of incidence of the vortex to the boundaries is
45°. Finally, we study the effect of self-induced magnetic fiéfds penetration depths ranging from 10 to 0.3
times the lattice spacindy taking into account the full-range inductance matrix of the array and find quali-
tatively equivalent results. We also discuss possible consequences of these results to experimental systems.

[. INTRODUCTION boundaries. Here, we report simulations of dc-biased arrays
with free boundaries, in zero applied magnetic field. For ev-
In recent years the viscous motion of a single vortex inery bias current considered we use the same initial phase
two-dimensional Josephson-junction arr@ydAs) has been configuration with one vortex in the middle of the array. We
studied numerically by several authdfs.In these studies study the dynamical interaction of the vortex with the free
the 1-V characteristics were calculated for JJA's with peri- boundary as it moves towards it for bias currents above the
odic boundary conditions perpendicular to the direction ofdepinning threshold. The vortex-boundary interaction is
the applied dc current. Apart from the vortex viscosity, theequivalent to the effect of an image antivortex at equal dis-
nature of its predicted mass* has attracted significant in- tance on the other side of the boundary. A vortex and an
terest, also experimentafty*® van der Zantet al reported antivortex interact logarithmicallyat sufficiently large dis-
experimental evidence for ballistic motion of vortices in atance$, and so the same holds for a vortex and a free bound-
current-free region in a highly underdamped Josephsorary. The total effective vortex potential is the sum of the
junction array® interaction potential and the periodic lattice pinning poten-
An interesting aspect of this problem, which is relevant totial. The Lorentz force on the vortex due to the applied bias
experiments such as those in Ref. 15, but that has not yeurrent corresponds to a tilt of this effective potential. Below
been studied systematically, is the influence of boundaries owe will see this more explicitly when we discuss the coarse-
the vortex motion. Experimentally one may distinguish twograined model equations for the vortex dynamics.
types of boundarietsee, e.g., Ref. 15Either the junctions The outline of this paper is the following. In Sec. Il we
at the edge are connected to a superconducting busbar define the model equations studied in this paper. There we
they are nof(free boundary The influence of the boundary consider the extreme type-II limiinfinite penetration depgh
on a vortex due to the busbar geometry can be described kas well as the case of finite penetration depth. We also dis-
an image vortex of the same sign, equidistant on the otheruss the coarse-grained vortex equations which are used to
side of the boundary; in the free boundary case the image afhalyze the results later in the paper. In Sec. Il A we present
the vortex is of opposite sign. The latter situation is to somaesults in the extreme type-ll regime and in Sec. Il B the
extent analogous to that of a soliton in a continuous longesults for finite magnetic penetration depth. In Sec. IV we
Josephson junctiofLJJ).r’~1° analyze the results from Sec. Il A in terms of the coarse-
The goal of this paper is to study the reflection, transmis-grained, phenomenological vortex equations including the
sion, and annihilation properties of vortices in JJA's with freeinteraction of the vortex with the free boundaries. In Sec. V
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we present results for a vortex moving in diagonal JJA’.
Section VI contains a summary of our results and some con-

clusions. AN A A A A A A A
N N N A V4 N AV4 N
N\ N N\ N\ N\ N N\
II. MODEL EQUATIONS X X X X X X X X
| HAHT AR R X
In JJA's vortices are represented by patterns of eddy cur- X X X X X X X X
rent around a plaquette. We consider dc-biased JJAs in the vl ISV IS VAL IRV XV IV IV
classical regime defined W§,>E.=e?%/2C, whereE; is the X X X X X X X X
Josephson coupling energy aBdthe characteristic charging VAl MV VA IRV MV MV RV,
energy of a junctione the electron charge, ar@ the mutual X X X X X X % X
N N\

capacitance of the junctions. In this case, and in zero applied
magnetic field, the individual junctions in the JJA's can be
modeled by the resistively and capacitively shunted junction

20 ) ) , N N A4 A4 N A4 N
(RCSJ model;” defined by the total bond currengr,r’) AN AN AN AN EaN RN e
between nearest neighbor siteandr’ as X X X X X X X X
HK T KT XK
o U , X X X X 3
(1,17 = Beb(r,r )+ B(r e+ S B(re ] (1) R TR O R MR JUR, O
N\ N N\ N\ N\ N\ N\
AN AN A4 AN AN A A
Here the dots represent time derivatives. The three contribu- .

tions toi(r,r’) are the displacement, the dissipative, and the " ' ' lp Y Y tp Tp
superconducting currents, respectively. The phase difference

across a junction ig(r,r')=6(r)— 6(r'). The currents are FIG. 1. Square array geometry used in the simulations, illus-
expressed in units of the junction critical currépt time iS  yrated with a 88 array. Junctions are denoted as crossed bonds.
measured in units of the characteristic  time pree boundary conditions are imposed in both directions, while the
Vo =11(2eR,l ), BC:(wclwp)z is the Stewart- current bias is applied along thedirection.

McCumber damping paramet@with the plasma frequency

o, defined aSwa:ZeIC/ﬁC, and R, is the junction's where®,=hc/2e is the elementary flux quantum. The vec-
normal-state resistance. The RCSJ model has a limitation. tor potential is time dependent, as is the total magnetic flux
does not take into account that the resistance of a real J@b(R,t) at plaguetteR:

sephson junction with higtB. is voltage dependent: For

voltages below the gap voltage the effective resistance is O(Rt) S ALt 4
determined by the quasiparticle resistance, which can be or- o, SR (r,r0. @

ders of magnitude larger than the normal-state resistance. H AR) denot terclockwi d th
In Fig. 1 we show the geometry of the square array to ere 7(R) denotes a counterclockwise sum aroun €

which most of the results discussed in this paper apply. EacRl2quetteR. The time-dependent magnetic flux is induced by
superconducting island is connected to four neighbor island Il the currents flowing in the array via the Faraday—Ampe
via identical Josephson junctions. The bias current is fed i aws. In zero external magnetic field, we may write
at the lower boundary and taken out at the upper boundary.
When we neglect the self-induced magnetic field pro- CD(R,t)=2 I'(R,r,a)i(r,r+a,t). 5)
duced by the current flowing in the arréinfinite magnetic ra
penetration depth), the array dynamics is described by Eq. I is a matrix that explicitly depends on the geometry of the
(1), together with Kirchhoff's current conservation condition array and the junctions. The standard inductance matrix is
then given by the discrete curl @f. As discussed in more
) ) detail in Ref. 22, in the linearized approximation the strength
Ea i(r,r+a)=ieq), (2)  of the self-induced fields is governed by the perpendicular
magnetic penetration depth

imposed at every island (the summation is over all nearest ®,
neighbor islands +a). We integrate the coupled equations A= Tl (6)
(1) and(2) using a fast algorithm discussed in Ref. 21. M cko

When we include the self-induced fields, thus includingor equivalently by thec parameter,
screening effects, we redefidér,r’) in (1) to be the gauge-
invariant phase difference across a junctiof(r,r’) N wge
=6(r)—6(r')—2xA(r,r'). The bond frustration variable “TaT w (@)
A(r,r") is defined by the line integral of the vector potential , ,
A wherewq, =R, /(®oa) and ug is the vacuum magnetic per-

meability. We set the lattice constamequal to unity and use
the parametek to indicate the degree of screening.
Ar,r')= iJ’r/Adl, 3) _ In our calcul_ations we use the full-range ind_uctance ma-
GoJr trix (“model C” in Ref. 22). The inductance matrix elements
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are computed using the model approximations discussed in For a finite array, an extra position-dependent force due to
Ref. 22. After choosing the temporal gauge, H4%-(5) can  the vortex-boundary interaction should enter at the right-
be combined into ondvecto) equation that governs the hand side of these equations:

complete dynamic¢see Ref. 2P

The vorticity n(R) of a plaquetteR is defined as MX+ 7x=ip+igsin(2mx) — F(x) 1D
and
2mn(R)=27®(R)+ > [6(r)— 6(r")—2mA(r,r")].
7R ®) MBSk — B s i i sin2mx)— F(x). (12)
1+B(B)X

Here the gauge-invariant phase differenéér)—6(r’)
—2mA(r,r') is taken between- 7 and + .

We would like to model the vortex motion in the array by
a coarse-grained equation of motion as in the Bardee
Stephen model for flux flow in continuous superconductors
The dissipative currents in the junctions, modeled in @g.
by currents through Ohmic shunt resistors, give rise to a d
viscous force on a moving vortex. Furthermore, in capacitive F(X)=——=1In —
arrays (3.>0), the electromagnetic energy stored in the dx L
junction capacitors due to the vortex motion can be inter{in order to avoid the singularities at the boundarie$18),
preted as the kinetic energy of a massive vorté®**For an  we use a cutoff: For distances to the boundaries smaller than
infinite array, and for infinite magnetic penetration depth, ahalf a lattice constant, we s&t(x)=0. Note that this cutoff
coarse-grained model equation in terms of a single continuprescription fixes the maximum attractive force due to the

To compute this force, one has to take into account all the
infinitely many image vortices that are produced by the array
rEoundaries. When we take the origin at the left-hand side
oundary of the array, this leads to the following form of the

force:

oL
—SINn
T

mX

. (13

ous vortex coordinate reads: boundary on the vortex & n,=F(x=12). In Ref. 13 it is
. . argued that the vortex mass increases close to a free bound-
MX+ mx=ip+igsin(2mx), (9 ary. It was found that this increase is only noticeable within

one lattice constant from the boundary. We do not include
this quantitative correction in the modgi$l) and (12), as

the arbitrariness of the cutoff prescription already makes the
S‘r_esults only qualitative in nature.

where M=78, and = for a square array.'*?® This
equation describes the vortex as a point particle with rivass
that, driven by alLorent force proportional td,, moves
through a sinusoidal pinning potential and experiences a vi
cous damping force with constant viscosity coefficigntAn
estimate fori 4 in a square lattice giveig~0.102% In a pre- IIl. RESULTS
vious papeP, we have deduced an alternative phenomeno- A A=oo
logical vortex equation of motion with a velocity-dependent _
vortex viscosity. In contrast to the model with constant vis- " Fig. 2 we present a summary of the results for a
cosity given in Eq(9), the nonlinear model gives a qualita- 16X 16 square array with. =< for different values ofg. .
tively correct account of the numerical results for theAt the bottom we show the results of the simulations for
current-voltage characteristics calculated using the full set ofc=0, in which the vortex motion is purely viscous and the
equationg1). The equation reads vortex mass is zero. We have considered all current values
betweeni,=0.0 andi,=1.0, with a grid ofAi=0.01. For

. ABd) .
M(Be) X+ —————Xx=ip+igsSin(2mX). (10 :
1+B(B:)X B.=200
Here the phenomenological constaAtsB, andM are found B=100__
to be weakly dependent g8, . B=50
In the model equation&®) or (10) the vortex dynamics is B.=25
described in terms of a single particle with coordinatdn B.=10
writing these equations we assume that, as the vortex moves, _
. - . Be=
it does not couple to other excitations in the array. As a
result, it is assumed that the electromagnetic energy associ- Pe=
ated with the moving vortex, and interpreted as its kinetic Be=0
energy, can only be absorbed by the viscous medium and not ) ) ) )
transmitted to other dissipative modes in the array. The lim- 00 02 04 06 08 10
ited validity of this assumption is apparent for example from ib

numerical simulation$?* where no ballistic vortex motion

was found when switching off the bias current. Furthermore, g1 2. Results for different values . for a 16x 16 square

it was found in experiment8and simulations that the vortex array with free boundaries. The dashed lines represent the current
viscosity does not decrease aRlivhen increasingR,. The  ranges for which type-A behavidvortex escapes from arrayas
nonzero vortex viscosity in the underdamped limit was un-<found. The thick lines denote the type-B rangéspped vortex
derstood in terms of the coupling of the moving vortex tooscillating in the arrayand the thin solid lines the row-switching
charge oscillation$‘spin waves”).?/ 1416 regimes.
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this system size the vortex depinning current is between
0.11 and 0.12, and so for currentg<0.11 the vortex is
pinned to the middle plaquette of the array, and for
i,=0.12 it is depinnedif one increases the system size the
depinning current will reach the valug=0.10 estimated in 101 -1
Ref. 24 for an infinite array When the vortex is depinned <V>,
and moves towards one of the free boundaries, the approach e
to its image on the other side of the boundary causes it to 0.5 ¢
accelerate. When the vortex reaches the boundary, it leaves
the array, or, equivalently, it is annihilated by its image anti-
vortex. We denote this behavior as type A. 0-000 01 02 03 04 05 06 07
Above i,=0.96 the 8.,=0 dynamics loses its single- o Ty T
vortex character after a short transient time, when additional b
Vortices_are generated in_ other FOWS. In_ fact the measured FIG. 3. Current-voltage characteristics f8g= 10, from simu-
voltage is due to the .motlon of vortices n &.1" rOWS. As we lations of a 16< 16 square array with one vortégolid ling). (V), is
Wf"mt to focus on the smglle—vortex dynqmlcs in this paper, Wehe time-averaged voltage across the array in the current direction,
will not go further into this type of motion here. in units of | R, and normalized by the number of longitudinal junc-

For nonzero., we started the simulations &0, in-  tions. The dashed line is tHeV characteristic computed from the
creasing the current linearly from zeroitpin oneRCtime  jinear viscosity mode{11).

of the junctions. The relaxational oscillations due to this in-
crease in the current decay while the vortex is moving towvoltage characteristic has a considerable slope in this regime,
wards the boundary. We checked that the behavior at thim contrast to the first zero-field step in a LJJ, which is much
boundary is not seriously affected by these relaxational osflatter, due to the fact that the voltage is limited by the maxi-
cillations by comparing the results to those in a3 array. mum soliton velocity. For even higher currents, we enter the

For B.=2, the results for the vortex propagation are simi-row-switching regime with a large voltage increase.
lar to the B8,=0 results. The only difference is that the re-  We interpret the type-B behavior as being the result of the
gime with type-A behavior now ends at0.86 due to the inertia, or kinetic energy, carried by the vortex. The attractive
onset of row switching, which means that the vortexinteraction between the vortex and its image provides a po-
switches one or more rows of longitudinal junctioGs., tential well from which the reflected antivortex has to escape
junctions in the current directiginto the resistive state:>?>  after the reflection and collision, in order to travel towards

For 8.=2.5 a current range opens up in which the vortexthe opposite boundary. The Lorentz force on the antivortex
is reflected as an antivortex at the boundary in the way alue to the applied bias current is in itself not sufficient to
soliton reflects in a long Josephson juncti@d)).t”*8Alter-  pull it out of the well. In addition, the vortex needs to have a
natively, one may say that the vortex and its antivortex imageninimum kinetic energy in order to escape: This will be the
pass through each other, analogously to the nondestructivese if both the vortex masd = w8, as defined in Eq(9)
soliton-antisoliton collisions in a L&:*° The antivortex in  and the vortex velocitymonotonically increasing witliy,)
turn is reflected at the opposite free boundary as a vorteare sufficiently large. In Fig. 4 we show snapshots of the
This sequence repeats so that the vortex or antivortex nevaportex configurations at different times fg8.=10 and
escapes from the array, thus producing a nonzero timed,=0.49. In Fig. 5 we show the time-dependent voltage
averaged voltage perpendicular to the vortex motion. We deacross the array, indicating the times at which the snapshots
note this as type B behavior. In a LJJ a similar type of solitonshown in Fig. 4 are taken. The large voltage fluctuations for
motion gives rise to the first zero-field st&pAlthough there  short times are due to the additive contributions of the relax-
are important differences between the properties of solitonational oscillations of all the individual longitudinal junc-
in a continuous junction and the properties of vortices in theions in the array as the bias current is changed from zero to
discrete array, it appears, in the regime considered here, th@t49 in the time interval &t<10. Fort>100 these oscilla-
their reflection properties at a boundary as well as their coltions have relaxed sufficiently and the vortex contribution to
lision properties are similar in many respects. For a two-the voltage becomes dominant. As the vortex approaches the
dimensional array of Josephson junctions the nondestructivieoundary its velocity increases and so does the voltage. At
collision of a vortex-antivortex pair has been alluded to bythe reflection, the vortex velocity jumps from a maximal
Nakajima and Sawada, in the context of a model includingvalue (just before the reflectionto a minimal value(just
the self-inductances of the plaquetfés. after the reflection

In Fig. 3 we show the voltage versus current characteristic To verify the interpretation of the vortex reflection as a
for B.=10. We note that for the calculation of this current- nondestructive collision with the image antivortex, we have
voltage characteristic we use the same initial phase configunvestigated the collision properties of a vortex-antivortex
ration for all the bias currents considered. Above the vortexpair explicitly. This entails simulations of a &2 square
depinning current, we start the calculation of the time-array with periodic boundary conditiong the direction of
averaged voltage only after a sufficiently long time intervalthe vortex motion, with one vortex and one antivortex sepa-
for the vortex to reach the boundary. As a result, in the caseated by 16 lattice constants present in the initial phase con-
of type-A behavior we measure no voltage, as there is ndiguration. This situation is the explicit realization of the
dissipation after the vortex escapes from the array. In conimage-vortex system corresponding to the<ii®& array with
trast, the type-B regime has a nonzero voltage. The currenfree boundaries and a single vortex. Below the row-

1.5x10%
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apart, and then fall back onto each other and annihilate. In
the LJJ-soliton language this is called a decaying breather
mode. In the finite array the corresponding process in the A
range(near to the B rangeconsists of a reflected antivortex
that falls back over the edge. We interpret this process as
evidence for a nonzero vortex mass: The vortex moves uphill
(in the potential landscapeuntil it reaches a turning point
where the kinetic energy is used up, and then falls back in
the potential well.

When 8. increases, the lowest current resulting in type-B
behavior decreases, as shown in Fig. 2. The current for row
switching decreases as well, similar to tBgdependence of
the row-switching threshold in previous simulations with pe-
riodic boundary conditions:®° In the next section we will
interpret the type-A versus type-B behavior in terms of the
coarse-grained model equations given in EG$)—(13) of a
vortex interacting logarithmically with its ima¢®.

For B.=50 we observe the sequenceAB — A — B
as a function of bias current: the type-B regime splits up into
two pieces separated by a second type-A regime. The second
type-A regime is due to the presence of charge oscillations

FIG. 4. Snapshots of the vorticity distribution E@) in a  on the shunt capacitors, which become larger in amplitude
16x 16 square array withB.=10 andi,=0.49, showing type-B for increasingB,. At the reflection, the vortex velocity be-
dynamics. In the frame labeled with O the vortétack square=  comes so large that additional dissipative modes in the array
vortex center plaquettés moving towards the right free boundary. are excited in the form of local charge oscillations on the
After reflection it travels as an antivortewhite squargtowards the  shunt capacitors. These oscillations interfere with the motion
opposite boundarframes 1 and g where it is reflected again as a of the antivortex, which as a result is slowed down and can-
positive vortex(frame 3. The snapshots correspond to the instantsyot escape from the potential well. For higher currents, there
indicated in Fig. 5. is a second B region. Here the antivortex has a higher veloc-
ity, and it is able to survive the coupling to the charge fluc-
tuations. The magnitude of the second A regime grows with

switching threshold, we find that indeed the corresponding3c. and we have found that foB.=500 there are no B
vortex dynamics, i.e., destructive collision’ Aand nonde-
structive collision B, takes place. The transition between
the types A and B’ behavior is at a current value close to
the one between types A and B in the finite array with one
vortex, thus providing a phenomenological explanation of
the results.

For currents in the type-Aregime close to B, the de-
structive collisions become a two-stage process: First the
vortices collide nondestructively, drift three lattice constants

10x10°

L

[=]
o—r

0 100 200 300 400
t FIG. 6. Snapshots of the vorticity distribution for a> &6 array
with free boundaries anig=0.65, with one positive vortex and one
FIG. 5. Voltage, normalized as in Fig. 3, versus time across antivortex moving in adjacent rows. The notation is as in Fig. 4.
16X 16 square array with one vortex, f@.=10 andi=0.49. The  Both vortices reflect at the edgésetween frames 0 and),1and
times labeled with 0 to 3 correspond to the respective snapshotllide constructively in the middle of the arrédgetween 2 and)3
shown in Fig. 4. interchanging rows.
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A=infinity A=infinity
A=10 A=10
A=5
A=5 A=2
A=1 A=1
Lo . B,=100 1202
00 02 04 06 08 10 00 02 04 06 08 10
i, i,
FIG. 7. Results for .dif'ferent values of fo‘r a 1616 square FIG. 8. Results for different values of for a 16x16 square
array with free boundaries #=10. The notation is the same as in aray with free boundaries #,=100. The notation is the same as
Fig. 2. in Fig. 2.

regimes left. We note that the breakup of the type-B regime
into two pieces and the disappearance of the reflection fof<X=<L. However, when the vortex reflects atL, the
very low damping have no counterpart in the context of apositive image vortex of the reflected antivortex has a coor-
soliton moving in a LJJ. dinate x>L, and we can interpret the oscillating state

One might ask if the collision can still be nondestructive (type-B behavior as the motion of a positive vortex through
if the vortices collide along a direction that is not parallel to the force fieldF(x), periodically extended to the complete
one of the coordinate axes. We have simulated a finitéeal axis. Type-A behavior then corresponds to trapping of
16X 16 square array witj,= 10 containing a vortex and an the vortex arounck=L (moduloL). Starting fromx=8 at
antivortex that are inserted not in the same row but in adjag€ach current value considered, we calculated the current-
cent rows. The results show a reduced but nonvanishing cukoltage characteristic numerically from Egd.1) and (13)
rent regime (0.6%i,=<0.66) for reflections for both vortices for L=15, using the cutoff prescription mentioned above.
at the edges plus a “new” nondestructive collision in the The results fo3.= 10 are shown as the dashed line in Fig. 3.
middle of the array, during which the vortices interchangeThe model underestimates the threshold for type-B dynam-
rows, as shown in Fig. 6. ics. As this threshold is very sensitive to the type of cutoff
used, we cannot draw quantitative conclusions about the vor-
tex mass from this result.

We have determined the threshold currents,z as a

Thus far we have studied the reflection properties of theunction of 3, from the model equatiofi1), as well as from
vortex in an array with zero self-induced magnetic fields, orthe same equation with the nonlinear friction term from Eq.
equivalently, with magnetic penetration depthmuch larger  (12). We find that the dependence of the-/8 threshold
than the array size. From the point of view of, for example,current ong,, is qualitatively the same as found in the simu-
arrays made of niobium junctions, in which the self-inducediations. In the models the decrease of the threshold value is
magnetic fields are non-negligité,it is important to see due to the increase in the mass parambter27 3., which
how these fields influence the reflection properties of a vorincreases the vortex kinetic energy. The larger this kinetic

tex. We have therefore studied the vortex propagation irenergy is, the easier it is for the vortex to escape from the
16X 16 square arrays for a range ofvalues at3.=10 and  effective potential well.

100. We find that the reflection still occurs for finke The We note that the way in which vortex inertia manifests
results are shown in Figs. 7 and 8. As discussed by Phillipgself, and hence thgossiblg attribution of a mass, depends
et al.?’ the vortex depinning current is enhanced by the selfon the dynamical situation considered. In previous
induced fields. For example, for our @6 array with simulations:>*in contrast to this work, the vortex mass was
A=0.3 andB.=100 we find that the vortex depins for cur- probed by switching off the bias current. Changing the cur-
rents larger than or equal tg=0.38. For3.=10 and in the rent gives rise to enhanced local relaxational oscillations in
type-Il regime @ larger than a few lattice spacingshe the junction phases near to the vortex center or, in other
width and the position of the B regime is somewhat insensiwords, to a coupling to other dissipative modes in the array.
tive to the\ value as one can see in Fig. 7. As we see in Figlnstead of allowing the vortex to continue its motion, the
8 for B.=100, the second A regime shrinks with decreasingelectromagnetic energy stored in the capacitors then leads to
A, and disappears for<<5. ForA<1 (type ) we find that local oscillations. For largg, these force the vortex center
the B regime shrinks, both fg8.=10 andB.=100. to oscillate back and forth a couple of times between two
adjacent plaquettes, as shown 8¢=2500 in Fig. 10 of
Ref. 2. During the decay of these oscillations the electromag-
netic energy is dissipated. The distance traveled by the vor-
tex after the current has been turned off is zero. Therefore the
In this section we will make a qualitative comparison of mass attributed to the vortex in this situation is zero or very
the A = results presented in Sec. Ill with the results for thesmall. Similarly, probing the vortex mass by looking at the
vortex motion in a finite array based on E@$l) and(12). hysteresis in thé-V characteristicS;® which also involves
Naively, in Eqg. (13) the parameter range fox is  changes in the current bias, leads to zero or very small phe-

B. Finite A regime

IV. COMPARISON WITH THE PHENOMENOLOGICAL
MODEL EQUATIONS
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what happens for a reflection at zero current bias. To study
this within the setting of our model simulation, one would
need a nonzero current first to depin the vortex and then
switch the current off just before the reflection. However, it
is knowrt?* that switching off the bias current is not fol-
lowed by a propagation of the vortex f@; in the range in
which we find vortex reflection. Therefore, switching off the
bias current just before the reflection does not seem to be an
option to study reflection at zero bias current.

VI. SUMMARY AND DISCUSSION

%
0%
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In conclusion, we have performed RCSJ-model simula-
tions of a finite Josephson-junction array containing a single
vortex in a dc current bias. For moderate damping, we find
current regimes where the vortex reflects at the boundary,
moving back as an antivortex towards the opposite boundary,
where the dual reflection process takes place, leading to a
stationary oscillatory state and a nonzero time-averaged volt-
age across the array. This oscillatory motion can be viewed
as a discrete analog of the bouncing of a soliton in an under-
damped long Josephson junction, which gives rise to the first
zero-field steg! The long Josephson junction or Josephson

FIG. 9. Diagonal array geometry used in the simulations, iIIus-tr":m.smiss.ion line can be used. as a vortex flow transistor or
trated with a 1% 15 array. For clarity we omitted the crosses on the oscillator in rTg1any different deV'Cé_g'Becently’ _Van der, Zant
bonds. In both directions free boundary conditions are imposed@"d erand@ explored the possibility of using a discrete
while the current bias is applied along a diagonal direction. Theone-dimensional1D) parallel array of underdamped junc-
open circle denotes the initial position of the vortex. tions as a vortex flow transistor. Some time ago it has been

shown numerically as well as experimentafty® that vor-
nomenological mas# (3.) in (10) for moderate values of tices in a 1D parallel Josephson array have solitonlike colli-
B..° sion properties. Our results show that the solitonlike collision

On the basis of the model interpretation, one would ex-2nd reflection also occur in two-dimensional arrays, and that
pect that, for some currents just below the transition tofhe first zero-field step has a discrete analog in JJAs, which
type-B behavior, the reflected antivortex is not falling backSuggests a possible use of the two-dimensional array as a
over the boundary, but it is retrapped by the lattice. Thisvortex-flow device. An important difference found with re-
retrapping is then the effect of the combination of the pin-SPect to the soliton motion in LJJ for very low damping is
ning modulation of the effective potential and the energy losghe fact that in the array the reflection is absent for values of
due to friction. We have looked for such a retrapping proces#c Of the order of 500 and largéf. - o
in the simulations forB,=100, and indeed found it for ~ When considering a vortex-antivortex pair in an array
i,=0.2462 (16<16 array. The reflected antivortex is re- With periodic conditions, the vortices collide nondestruc-

equivalent to the reflection of one vortex at a free boundary.

Our numerical results can be interpreted in terms of a mac-
roscopic model equation for a massive vortex. We also stud-

An important question is how robust the vortex reflectionied the vortex propagation in a diagonal array where the
at a boundary(or the nondestructive collision of a vortex- Vvortex has an angle of incidence of 45° to the boundary, and
antivortex paiy is for other array geometries. We have stud-found that, for appropriate bias currents, reflection takes
ied the case in which the current is injected not along one oplace here as well. Finally, we also studied the effect of
the coordinate axes, but along thex andy directions. See self-induced magnetic fields, using a model that takes into
Fig. 9, which shows a 1515 diagonal array, in which the account the full inductance matrix of the array, and found
initial position of the vortex is indicated by an open circle. that the same type of vortex reflection regimes as in the
The vortex will move at 45° to the boundary, due to theh = case is present for a range of values\o&nd . .
diagonal current bias, which allows us to study the reflection
behavior for this angle of incidence. We also find solitonlike
reflection in this case, although the width of the current re-
gime is smaller, and vanishes again already @.avalue We thank J.E. Mooij for suggesting the topic of this work.
somewhere between 50 and 100. Although the vortex and ité/e also thank him and W. Elion, P. Hadley, A. van Oude-
image collide at an angle of 90°, the reflecting antivortexnaarden, and H. van der Zant for discussions. This work was
still retraces the path of the incident vortex. This is basicallysupported in part by the Dutch organization for fundamental
because the antivortex has to travel at right angles to theesearchFOM). The work of J.V.J. has been partially sup-
applied bias current. An interesting question would then beorted by NSF Grant No. DMR-9521845.
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