56 research outputs found

    An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease

    Get PDF
    BACKGROUND: With the rising global prevalence of fatty liver disease related to metabolic dysfunction, the association of this common liver condition with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the term non-alcoholic fatty liver disease (NAFLD). The observed association between MAFLD and CKD and our understanding that CKD can be a consequence of underlying metabolic dysfunction support the notion that individuals with MAFLD are at higher risk of having and developing CKD compared with those without MAFLD. However, to date, there is no appropriate guidance on CKD in individuals with MAFLD. Furthermore, there has been little attention paid to the link between MAFLD and CKD in the Nephrology community. METHODS AND RESULTS: Using a Delphi-based approach, a multidisciplinary panel of 50 international experts from 26 countries reached a consensus on some of the open research questions regarding the link between MAFLD and CKD. CONCLUSIONS: This Delphi-based consensus statement provided guidance on the epidemiology, mechanisms, management and treatment of MAFLD and CKD, as well as the relationship between the severity of MAFLD and risk of CKD, which establish a framework for the early prevention and management of these two common and interconnected diseases

    The Genome of Ganderma lucidum Provide Insights into Triterpense Biosynthesis and Wood Degradation

    Get PDF
    BACKGROUND: Ganoderma lucidum (Reishi or Ling Zhi) is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb) draft genome, which encoded 12,080 protein-coding genes and ∼83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs), were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. CONCLUSIONS/SIGNIFICANCE: The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Study on Creep Behavior of Silty Clay Based on Fractal Derivative

    No full text
    Soft soil is widely distributed in the riverside area of southern China. The creep deformation characteristics of the soft soil affect the long-term stability of the structure foundation, which cannot be ignored. Through the triaxial drainage creep test, the creep characteristics of riverside soil with a soft interlayer from Jiangsu Province were studied. The test results show that the creep procedure of the soft soil is divided into two stages, exhibiting steady-state creep and shear shrinkage characteristics with time and stress growth, which presents typical nonlinear behavior. Additionally, the confining pressure and stress are critical factors affecting creep characteristics. The fractal dashpot based on fractal derivative theory is introduced in place of the Abel dashpot in the classical fractional Burgers model; a fractal Burgers creep model with few parameters, high precision, and clear physical significance is established. Additionally, an analytical solution to the creep model is given. The model parameters are determined by fitting the test results, and the comparison shows that the results estimated with the model are more accurate than those estimated with the traditional model. The sensitivity analyses of the model parameters reveal the influence of key parameters on the creep characteristics of the soil. The results further confirm that the proposed fractal Burgers model can characterize the creep behavior of viscoelastic soil. These observations are extremely important for predicting the foundation displacement and formulating measures to prevent the deformation, which can provide a reference for engineering applications in the riverside area of southern China

    Study on Creep Behavior of Silty Clay Based on Fractal Derivative

    No full text
    Soft soil is widely distributed in the riverside area of southern China. The creep deformation characteristics of the soft soil affect the long-term stability of the structure foundation, which cannot be ignored. Through the triaxial drainage creep test, the creep characteristics of riverside soil with a soft interlayer from Jiangsu Province were studied. The test results show that the creep procedure of the soft soil is divided into two stages, exhibiting steady-state creep and shear shrinkage characteristics with time and stress growth, which presents typical nonlinear behavior. Additionally, the confining pressure and stress are critical factors affecting creep characteristics. The fractal dashpot based on fractal derivative theory is introduced in place of the Abel dashpot in the classical fractional Burgers model; a fractal Burgers creep model with few parameters, high precision, and clear physical significance is established. Additionally, an analytical solution to the creep model is given. The model parameters are determined by fitting the test results, and the comparison shows that the results estimated with the model are more accurate than those estimated with the traditional model. The sensitivity analyses of the model parameters reveal the influence of key parameters on the creep characteristics of the soil. The results further confirm that the proposed fractal Burgers model can characterize the creep behavior of viscoelastic soil. These observations are extremely important for predicting the foundation displacement and formulating measures to prevent the deformation, which can provide a reference for engineering applications in the riverside area of southern China

    YQFM Alleviates Side Effects Caused by Dasatinib through the ROCK/MLC Pathway in Mice

    No full text
    Dasatinib, as a second-generation broad-spectrum tyrosine kinase inhibitor, presents an antitumor effect by inhibiting tyrosine kinases. However, dasatinib causes serious side effects, such as gastrointestinal bleeding and liver toxicity, possibly through the activation of ROCK kinase and MLC phosphorylation. At present, there is no effective prevention and treatment method. Previous research studies have shown that YQFM (YiQiFuMai powder injection) protects the blood-brain barrier by inhibiting the ROCK/MLC signaling pathway; whether YQFM can alleviate the side effects of dasatinib is unknown. In this study, dasatinib was injected (i.p. 70 mg/kg) and YQFM (i.p. 0.336 g/kg, 0.672 g/kg, 1.342 g/kg) was given in advance for 3 days to mice, to explore the effect of YQFM on side effects induced by Dasatinib. The results confirmed that YQFM significantly decreased Evans blue leakage in the small intestine and increased intestinal blood flow, increased the expression of ZO-1, Occludin, and VE-cadherin, and reduced the contents of D-lactic acid, s-VE-cadherin, Alanine aminotransferase (ALT), and Aspartate aminotransferase (AST) in serum. Finally, YQFM inhibited the expression of ROCK-1 and phosphorylation of MLC induced by Dasatinib. These findings suggested that YQFM could improve the side effects caused by Dasatinib linked with the ROCK/MLC signaling pathway, as shown in the graphical abstract

    Rh-PIP2;1, a Rose Aquaporin Gene, Is Involved in Ethylene-Regulated Petal Expansion1[C][W][OA]

    No full text
    Aquaporins are water channel proteins that facilitate the passage of water through biological membranes and play a crucial role in plant growth. We showed that ethylene treatment significantly reduced petal size, inhibited expansion of petal abaxial subepidermal cells, and decreased petal water content in rose (Rosa hybrida ‘Samantha’). Here, we report the isolation of a plasma membrane aquaporin (PIP) gene, Rh-PIP2;1, and characterized its potential role in ethylene-inhibited petal expansion. Rh-PIP2;1 is mainly localized on the plasma membrane and belongs to the class 2 subfamily of PIP proteins. We show that Rh-PIP2;1 is an active water channel. The transcripts of Rh-PIP2;1 are highly abundant in petal epidermal cells, especially in the abaxial subepidermal cells. The expression of Rh-PIP2;1 is highly correlated with petal expansion and tightly down-regulated by ethylene. Furthermore, we demonstrate that in Rh-PIP2;1-silenced flowers, petal expansion was greatly inhibited and anatomical features of the petals were similar to those of ethylene-treated flowers. We argue that Rh-PIP2;1 plays an important role in petal cell expansion and that ethylene inhibits petal expansion of roses at least partially by suppressing Rh-PIP2;1 expression
    corecore