15 research outputs found

    Transport impacts on atmosphere and climate: Land transport

    Get PDF
    Emissions from land transport, and from road transport in particular, have significant impacts on the atmosphere and on climate change. This assessment gives an overview of past, present and future emissions from land transport, of their impacts on the atmospheric composition and air quality, on human health and climate change and on options for mitigation. In the past vehicle exhaust emission control has successfully reduced emissions of nitrogen oxides, carbon monoxide, volatile organic compounds and particulate matter. This contributed to improved air quality and reduced health impacts in industrialised countries. In developing countries however, pollutant emissions have been growing strongly, adversely affecting many populations. In addition, ozone and particulate matter change the radiative balance and hence contribute to global warming on shorter time scales. Latest knowledge on the magnitude of land transport's impact on global warming is reviewed here. In the future, road transport's emissions of these pollutants are expected to stagnate and then decrease globally. This will then help to improve the air quality notably in developing countries. On the contrary, emissions of carbon dioxide and of halocarbons from mobile air conditioners have been globally increasing and are further expected to grow. Consequently, road transport's impact on climate is gaining in importance. The expected efficiency improvements of vehicles and the introduction of biofuels will not be sufficient to offset the expected strong growth in both, passenger and freight transportation. Technical measures could offer a significant reduction potential, but strong interventions would be needed as markets do not initiate the necessary changes. Further reductions would need a resolute expansion of low-carbon fuels, a tripling of vehicle fuel efficiency and a stagnation in absolute transport volumes. Land transport will remain a key sector in climate change mitigation during the next decades

    Air pollution and municipal solid waste management related risks

    No full text

    Climate change related risk

    No full text

    Axiology of threats

    No full text

    Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe

    No full text
    Air pollution by particulate matter (PM) is recognized as a one of the most important environmental issue. A particular attention is being paid to fine PM fraction (PM2.5, PM1.0) due to its detrimental impact on human health and long-term persistence in the air. Presented work is an in-depth bibliometric study on the concentrations and chemical composition of PM2.5 among 27 rural and 38 urban/urban background stations dispersed across the Europe. Obtained results indicate that the chemical composition of PM2.5, in terms of mass concentrations and percentage contribution of main chemical constituents, is relatively different in various parts of Europe. Urban and urban background stations are typically characterized by higher share of total carbon (TC) in PM2.5, compared to rural background sites, mostly pronounced during the heating periods. The share of the secondary inorganic aerosol (SIA) is typically higher at rural background stations, especially in North-Western Europe. In general, the relative contribution of SIA in PM2.5 mass, both at rural and urban background stations, showed more or less pronounced seasonal variation, opposite to Polish measurement sites. Moreover, Poland stands out from the majority of the European stations by strong dominance of total carbon over secondary inorganic aerosol

    Health-Based Approach to Determine Alert and Information Thresholds for Particulate Matter Air Pollution

    No full text
    In this study Health Impact Assessment (HIA) methods were used to evaluate potential health benefits related to keeping air pollution levels in Poland under certain threshold concentrations. Impacts of daily mean particulate matter (PM)10 levels on hospital admissions due to cardiovascular and respiratory diseases were considered. Relative risk coefficients were adopted from WHO HRAPIE project. The analyses covered period from 2015 to 2017, and were limited to the heating season (1st and 4th quarter of the year), when the highest PM10 concentrations occur. The national total number of hospital admissions attributed to PM10 concentration exceeding WHO daily Air Quality Guideline value of 50 µg/m3 was calculated for each of the 46 air quality zones established in Poland. We found that the reduction of the attributable hospital admissions by 75% or 50% of that expected for the “best case scenario”, with no days with PM10 concentration exceeding 50 µg/m3 would require avoidance of exceedance by the daily mean PM10 concentration of 64 µg/m3 and 83 µg/m3, respectively. These concentrations were proposed as the information and alert thresholds, respectively. The alert thresholds were exceeded on 2 and 38 days per year in the least and the most polluted zones, respectively. Exceedances of the information thresholds occurred on 6 and 66 days in these zones

    Health-Based Approach to Determine Alert and Information Thresholds for Particulate Matter Air Pollution

    No full text
    In this study Health Impact Assessment (HIA) methods were used to evaluate potential health benefits related to keeping air pollution levels in Poland under certain threshold concentrations. Impacts of daily mean particulate matter (PM)10 levels on hospital admissions due to cardiovascular and respiratory diseases were considered. Relative risk coefficients were adopted from WHO HRAPIE project. The analyses covered period from 2015 to 2017, and were limited to the heating season (1st and 4th quarter of the year), when the highest PM10 concentrations occur. The national total number of hospital admissions attributed to PM10 concentration exceeding WHO daily Air Quality Guideline value of 50 µg/m3 was calculated for each of the 46 air quality zones established in Poland. We found that the reduction of the attributable hospital admissions by 75% or 50% of that expected for the “best case scenario”, with no days with PM10 concentration exceeding 50 µg/m3 would require avoidance of exceedance by the daily mean PM10 concentration of 64 µg/m3 and 83 µg/m3, respectively. These concentrations were proposed as the information and alert thresholds, respectively. The alert thresholds were exceeded on 2 and 38 days per year in the least and the most polluted zones, respectively. Exceedances of the information thresholds occurred on 6 and 66 days in these zones

    Air Quality Integrated Assessment Modeling in the context of EU policy: a way forward

    No full text
    In the EU-FP7 project APPRAISAL the current practice for integrated assessment modelling (IAM) of air quality in the EU was reviewed, limitations were identified and guidance for improvements was provided. In this article we present the guidance proposed by APPRAISAL. This guidance takes into account that a single IAM solution does not exist but that the different elements of the IAM methodology can be addressed in more or less detail taking into account the available data, the regional/local specificities, the financial resources and the actual purpose of the assessment.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore