37 research outputs found

    Analysis of Non-Linear Probabilistic Hybrid Systems

    Full text link
    This paper shows how to compute, for probabilistic hybrid systems, the clock approximation and linear phase-portrait approximation that have been proposed for non probabilistic processes by Henzinger et al. The techniques permit to define a rectangular probabilistic process from a non rectangular one, hence allowing the model-checking of any class of systems. Clock approximation, which applies under some restrictions, aims at replacing a non rectangular variable by a clock variable. Linear phase-approximation applies without restriction and yields an approximation that simulates the original process. The conditions that we need for probabilistic processes are the same as those for the classic case.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Computing Distances between Probabilistic Automata

    Full text link
    We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bi)simulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bi)simulation, which we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Approximate reasoning for real-time probabilistic processes

    Full text link
    We develop a pseudo-metric analogue of bisimulation for generalized semi-Markov processes. The kernel of this pseudo-metric corresponds to bisimulation; thus we have extended bisimulation for continuous-time probabilistic processes to a much broader class of distributions than exponential distributions. This pseudo-metric gives a useful handle on approximate reasoning in the presence of numerical information -- such as probabilities and time -- in the model. We give a fixed point characterization of the pseudo-metric. This makes available coinductive reasoning principles for reasoning about distances. We demonstrate that our approach is insensitive to potentially ad hoc articulations of distance by showing that it is intrinsic to an underlying uniformity. We provide a logical characterization of this uniformity using a real-valued modal logic. We show that several quantitative properties of interest are continuous with respect to the pseudo-metric. Thus, if two processes are metrically close, then observable quantitative properties of interest are indeed close.Comment: Preliminary version appeared in QEST 0

    Distances for Weighted Transition Systems: Games and Properties

    Get PDF
    We develop a general framework for reasoning about distances between transition systems with quantitative information. Taking as starting point an arbitrary distance on system traces, we show how this leads to natural definitions of a linear and a branching distance on states of such a transition system. We show that our framework generalizes and unifies a large variety of previously considered system distances, and we develop some general properties of our distances. We also show that if the trace distance admits a recursive characterization, then the corresponding branching distance can be obtained as a least fixed point to a similar recursive characterization. The central tool in our work is a theory of infinite path-building games with quantitative objectives.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Block-safe Information Flow Control

    Get PDF
    Flow-sensitive dynamic enforcement mechanisms for information flow labels offer increased permissiveness. However, these mechanisms may leak sensitive information when deciding to block insecure executions. When enforcing two labels (e.g., secret and public), sensitive information is leaked from the context in which this decision is taken. When enforcing arbitrary labels, additional sensitive information is leaked from the labels involved in the decision to block an execution. We give examples where, contrary to a common belief, a mechanism designed to enforce two labels may not be able to enforce arbitrary labels, due to this additional leakage. In fact, it is not trivial to design a dynamic enforcement that offers increased permissiveness, handles multiple labels, and does not introduce information leakage due to blocking insecure executions. In this paper, we present a dynamic enforcement mechanism of information flow labels that has all these three attributes. Our mechanism is not purely dynamic, since it uses a light-weight, on-the-fly, static analysis of untaken branches. We prove that the set of all normally terminated and blocked traces of a program, which is executed under our mechanism, satisfies noninterference, against principals that make observations throughout execution

    Labelled Markov processes

    No full text
    We develop a theory of probabilistic continuous processes that is meant ultimately to be part of an interactive systems theory. Our model is a generalization of ordinary labelled transition systems to which we add probabilistic transitions. The four main contributions are: (1) a notion of bisimulation equivalence and simulation preorder, (2) a logic for characterizing bisimulation and simulation, (3) an approximation scheme and (4) a metric on the collection of processes. We prove that bisimulation is characterized by a very simple logic that neither involves negation nor infinite conjunction. We have a similar result for simulation between discrete processes. Moreover, these characterizations are used to construct two algorithms, one that decides whether two finite-state probabilistic processes are bisimilar, and another that decides whether a state simulates another.We show how to approximate any continuous process with finite-state processes, and that one can reconstruct the process from its approximations. These finite approximations can be as close as we want to the original process. Moreover, we define a family of metrics that can tell how far apart or how close two processes are. The metrics also witness the fact that the approximations converge to the original process.Finally, we prove that the processes where the transition graph is a tree and whose transition probabilities are all rational form a basis of the space of labelled Markov processes; this means that labelled Markov processes form a separable metric space

    Continuous Stochastic Logic Characterizes Bisimulation of Continuous-time Markov Processes

    Get PDF
    In a recent paper Baier, Haverkort, Hermanns and Katoen [BHHK00], analyzed a new way of model-checking formulas of a logic for continuoustime processes - called Continuous Stochastic Logic (henceforth CSL) { against continuous-time Markov chains { henceforth CTMCs. One of the important results of that paper was the proof that if two CTMCs were bisimilar then they would satisfy exactly the same formulas of CSL. This raises the converse question { does satisfaction of the same collection of CSL formulas imply bisimilarity? In other words, given two CTMCs which are known to satisfy exactly the same formulas of CSL does it have to be the case that they are bisimilar? We prove that the answer to the question just raised is \yes". In fact we prove a signi cant extension, namely that a subset of CSL suces even for systems where the state-space may be a continuum. Along the way we prove a result to the eect that the set of Zeno paths has measure zero provided that the transition rates are bounded
    corecore