We develop a pseudo-metric analogue of bisimulation for generalized
semi-Markov processes. The kernel of this pseudo-metric corresponds to
bisimulation; thus we have extended bisimulation for continuous-time
probabilistic processes to a much broader class of distributions than
exponential distributions. This pseudo-metric gives a useful handle on
approximate reasoning in the presence of numerical information -- such as
probabilities and time -- in the model. We give a fixed point characterization
of the pseudo-metric. This makes available coinductive reasoning principles for
reasoning about distances. We demonstrate that our approach is insensitive to
potentially ad hoc articulations of distance by showing that it is intrinsic to
an underlying uniformity. We provide a logical characterization of this
uniformity using a real-valued modal logic. We show that several quantitative
properties of interest are continuous with respect to the pseudo-metric. Thus,
if two processes are metrically close, then observable quantitative properties
of interest are indeed close.Comment: Preliminary version appeared in QEST 0