Block-safe Information Flow Control

Elisavet Kozyri* Josée Desharnais'
Cornell University Laval University
ekozyri@cs.cornell.edu josee.desharnais@ift.ulaval.ca

Nadia Tawbif
Laval University
tawbi@ulaval.ca

August 8, 2016

Abstract

Flow-sensitive dynamic enforcement mechanisms for information
flow labels offer increased permissiveness. However, these mechanisms
may leak sensitive information when deciding to block insecure ex-
ecutions. When enforcing two labels (e.g., secret and public), sen-
sitive information is leaked from the context in which this decision
is taken. When enforcing arbitrary labels, additional sensitive infor-
mation is leaked from the labels involved in the decision to block an
execution. We give examples where, contrary to a common belief, a
mechanism designed to enforce two labels may not be able to enforce
arbitrary labels, due to this additional leakage. In fact, it is not trivial
to design a dynamic enforcement that offers increased permissiveness,
handles multiple labels, and does not introduce information leakage
due to blocking insecure executions. In this paper, we present a dy-
namic enforcement mechanism of information flow labels that has all
these three attributes. Our mechanism is not purely dynamic, since it
uses a light-weight, on-the-fly, static analysis of untaken branches. We
prove that the set of all normally terminated and blocked traces of a
program, which is executed under our mechanism, satisfies noninterfer-
ence, against principals that make observations throughout execution.

*Supported in part by AFOSR grants F9550-16-0250 and grants from Microsoft.
TResearch supported by NSERC.

1 Introduction

Flow-sensitive dynamic (FSD) enforcement of information flow policies has
been the subject of an extended line of research (e.g., [12, 9, 5, 4, 13, 28, 21]),
because it offers increased permissiveness (i.e., it rejects fewer secure execu-
tions) and programming flexibility (e.g., it can handle dynamically loaded
code). FSD mechanisms use run time information (i) to automatically de-
duce information flow labels for computed values, and (ii) to guarantee the
satisfaction of these labels. For confidentiality, an information flow label
that tags a value is satisfied if the value and all its derived values are read
only by principals specified by the label.

The majority of FSD mechanisms (i.e., [25, 12, 1, 7, 9, 5, 4, 29, 13,
28, 21, 23, 8]) monitor program executions and take some action when the
next command to be executed may violate labels on some values. These
mechanisms can either modify this insecure command, skip it, execute an
infinite loop, or block the execution ([24, 23, 12]). The most common action,
which is also employed by work on FSD mechanisms for JavaScript [20,
13, 28, 21], is blocking the execution. In this paper, we focus on FSD
mechanisms that block an execution when the remaining command to be
executed may violate labels on some values.

An FSD mechanism that blocks insecure executions may introduce covert
channels that do not already exist in programs [10]. Indeed, such a covert
channel may be introduced if the decision to block an execution depends on
sensitive information. We call mechanisms that introduce covert channels by
blocking executions, block-unsafe; mechanisms that do not introduce such
channels are called block-safe.

A block-unsafe mechanism may leak entire secrets, if principals make
observations during program execution [2].! For example, consider the fol-
lowing program:

w = 0;

while (w < N){
if (w=h) then!' := h end
wi=w-+1
l:=w

}

Tt may leak one bit per execution if principals observe only the final values of variables,
at the end of execution. In this paper we consider the strongest threat model where
principals make observations throughout the execution.

where h is sensitive information, [,!’ store public information that all prin-
cipals can observe, and w’s sensitivity changes to match the sensitivity of
the information stored in w. The only insecure command in the above
program is assignment [’ := h, because it makes a sensitive information
(i.e., h) observable to all principals (i.e., those observing I’). A block-unsafe
FSD mechanism would block the execution only if this insecure assignment
" := h is the next command to be executed. However, when the execution
is blocked, [contains the exact value of h (assuming 0 < h < N), and thus,
the sensitive value of h is leaked to all principals, which observe [.
Previously proposed block-safe mechanisms [7, 1]> are not as permis-
sive as block-unsafe mechanisms (e.g., [20, 13, 28, 21]). This is due to the
way labels on variables are constructed after the termination of conditional
commands.®> Consider, for example, the following conditional command:

if [> 0 then w := h else w := [end. (2)

Previously proposed block-safe mechanisms always associate label H (high
confidentiality) with w at the end of this conditional command, whereas
block-unsafe mechanisms associate H with w, when [> 0, and associate
L (low confidentiality) with w, when [< 0. So, the former mechanisms
make a conservative approximation when updating w’s label, while the latter
consider the actual label of the value stored in w. In this paper, we call a
FSD mechanism true flow-sensitive, if at the end of conditional commands,
it considers the actual labels of values stored in variables. True flow-sensitive
mechanisms offer increased permissiveness, because they tag variables with
less conservative labels.

The goal for this paper is to design a dynamic mechanism for multiple
labels that is both block-safe and true flow-sensitive. It is tricky to design
such a mechanism. Take, for example, the true flow-sensitive mechanism
used in example (1). In this example, sensitive information h is leaked
because the mechanism decided to block the execution in a context that
depends on h. Consider, instead, a true flow-sensitive mechanism that is
checking the security of assignments before entering a sensitive context. In
this way, the decision to block an execution would not depend on sensitive
information. Such a mechanism is block-safe when only two labels are used.*

2They are termination sensitive, which is stronger than block-safe.

3A conditional command is either an “if” or “while” command.

“Checks before conditional commands are used in [3], but for a flow-insensitive mech-
anism. We believe that the true flow-sensitive version of this mechanism is still block-safe
for two labels.

Surprisingly, it is not block-safe when multiple labels are used. Take, for
example, the following program that uses three labels:

[:=0;

if m > 0 then w := m else w := h end 3)
!

m' = w;
=1

where [is tagged with L, h is tagged with H, and m,m’ are tagged with
medium label M (i.e., medium confidentiality). Even if no check on labels is
performed in sensitive context, the sensitive value stored in m could still be
leaked to [via blocking executions, as we now explain. Assignment m’ := w
is allowed to be executed when the label of w is not violated by the label
of m’ (i.e., M), and it is blocked, otherwise. Notice that this check on labels
is not performed in a sensitive context. If m > 0, then the label of w is
M, assignment m’ := w is not blocked, and thus, [becomes 1. If m # 0,
then the label of w is H, assignment m’ := w is blocked, assignment [:= 1
is not executed, and thus the value of [remains 0. Thus, deciding to block
assignment m’ := w causes sensitive value m > 0 to be leaked to variable
l. This example challenges a common belief that mechanisms for two labels
can be easily extended to offer the same security guarantees for arbitrary
labels.

In this paper, we introduce a block-safe, true flow-sensitive, dynamic
mechanism that enforces multiple labels. To provide block-safety we keep
track of the sensitivity of the information used to decide whether an execu-
tion blocks, and we ensure that this information is not leaked to unautho-
rized principals. The decision to block an execution depends on the context
in which this decision is taken and on the labels of variables that are be-
ing checked. These labels may depend on sensitive information, due to the
combination of true flow-sensitivity and the use of more than two labels (in
Example (3), the label of w depends on m). We employ metalabels, which
are labels on labels, to represent the sensitivity of corresponding labels. The
sensitivity of a check is then determined by the metalabels of labels involved
in this check, as well as, the sensitivity of the context in which this check
is performed. An execution is blocked when the sensitivity of previously
evaluated checks may be violated.

Metalabels are computed during execution, and thus, they may as well
depend on sensitive information. Fortunately, we do not need additional
machinery to protect sensitive information encoded in metalabels (e.g., we
do not need meta-metalabels) from leaking to unauthorized principals via

blocking executions. The way our mechanism uses metalabels is sufficient
to guarantee noninterference [18].

We prove that the set of all normally terminated and blocked traces of a
program, which is executed under our mechanism, satisfies noninterference.
So, we prove that changes in initial sensitive information do not influence
the observations made by unauthorized principals throughout execution, no
matter if the executions were blocked or terminated normally. Thus, our
mechanism is block-safe. To address implicit flow of information that could
violate noninterference, our mechanism employs a light-weight, on-the-fly,
static analysis of untaken branches.

From our mechanism we derive a simpler one that handles two labels
(H and L). Due to true flow-sensitivity, this simpler mechanism is, in many
cases, more permissive than other block-safe FSD mechanisms already pro-
posed for two labels.

We proceed as follows: Section 2 gives the programming language in
which programs are assumed to be written, and it defines the threat model.
Section 3 presents our enforcement mechanism, and Section 4 gives the
soundness theorem for our mechanism. Section 5 discusses the derivation of
a simpler mechanism for H and L labels. Section 6 examines related work,
and Section 7 concludes.

2 Labels and Programming Language

Our mechanism tags each variable with a label ¢ from a set £. Values stored
in a variable tagged with ¢, are considered to be tagged with ¢, too. Thus,
a label ¢ that tags a variable x, dictates who can read a value v stored in =
and all values that may be derived from v. We say that label £ is at least
as restrictive as label ¢/, writing ¢’ C £, if £ allows a subset of principals to
read values than those allowed by ¢'. So, a value tagged with ¢ is considered
to be at least as sensitive as a value tagged with #'.

In security literature, the pair (£, C) is a lattice, with bottom element
1 and join operator LI. Bottom element L represents the least restrictive
policy. The result of applying LI to two labels ¢1, /5 is a third label f3 that
represents a policy at least as restrictive as the policy represented by ¢1 and
{5. Label /3 is the least restrictive label that satisfies this description. A
lattice commonly used in information flow literature is ({H,L}, C), where
1l =Land LC H Here, LLUH=H,HUH=H, and LUL = L. If a variable
x is tagged with L, then all principals are allowed to read = (z is public),
whereas if z is tagged with H, then only a particular set of principals are

allowed to read x (x is secret).

For this paper, we consider programs being written in a simple imper-
ative programming language, whose syntax is presented in Figure 1. This
language defines two disjoint sets of variables:

Anchor variables V,: Variables with fized labels (i.e., their labels do not
change during execution). Anchor variables simulate sources and sinks
of information with fixed labels, such as files, channels and input/output
devices. An anchor variable is denoted with a. We also use h, m, and [
to denote anchor variables tagged with labels H, M, and L, correspond-
ingly.

Working variables V,,: Variables with changing labels. Working vari-
ables simulate temporary slots used during computation, such as mem-
ory slots and registers. Labels for working variables are deduced by
our dynamic mechanism. We use w to denote a working variable, and
x to denote a working or an anchor variable.

So, V =V, UV, is the complete set of variables.

(Constants) n € N
(Anchor variables) a,xz € V,
S

(Working variables) w,x Vi
(Expressions) E n|xz|& op &
(Commands) C == skip|z:=E&]C1;Co |

if £ then C; else C; end |
while £ do C end

Figure 1: Syntax

According to the syntax presented in Figure 1, an expression & is either
a constant, or an anchor variable, or a working variable, or a synthesis of
expressions. A command is either skip, or an assignment, or a conditional
command, or a synthesis of commands.

The execution of a program is semantically represented by a trace 3,
which is a sequence of program states.> A program state o is a pair (C~, M)
consisting of a residual command C~ and memory M. A residual command
C~ is a remaining command to be executed, defined as:

C~ £C|stop|end|C[;C;.

®Section 3 gives the operational semantics that generates these traces.

Residual command stop is an indication of normal termination, and end
informs the enforcement mechanism that a conditional command has been
exited. The information that a conditional command has been exited is
used by our enforcement mechanism to properly update labels of certain
variables.

A memory M maps variables to values and labels. M(x) denotes the
value of variable z in M, and M (z) denotes the label of anchor or working
variable x in M.

Consequently, a trace X is represented by a sequence

(Cyy My) — (Cy, M) — ... — (C,, My,).

We write (C;', M1) = M, to denote a trace that starts from state (C;’, M)
and normally terminates at a state (stop, M,), or it is blocked, due to the
enforcement mechanism, at a state (C,;, My).

Threat Model

During execution, principals can observe values being assigned to variables.
Each principal is associated with a label that indicates an upper bound on
the sensitivity of values that this principal can observe. Our mechanism
uses predicate ¢(M,x,¢) to encode whether the assignment of a value to
variable z can be observed by a principal associated with ¢. Predicate ¢ is
formally defined in the next section. Additionally, all principals can sense
the (normal or enforced) termination of an execution. After termination, no
more observations are generated.

So, a trace X can be projected onto a sequence of observations X, that
is made by a principal associated with ¢. Specifically, 3|, evaluates to a list
of pairs (x, M(x)), where there is one pair for each assignment x := £ to a
target variable x satisfying ¢(M, x, £) that occurred in trace X.

Multiple principals can make observations from a trace. If L is a set
of labels, then a trace ¥ can be projected onto a sequence of observations
¥|r that is made by principals associated with some labels in L. Formally,
given a trace ¥ = (C;, My) — (C5, M2) — X', where ¥’ may be empty, we

define:

((Cr, M) = (Cy, M) — X)L =

(x, My(x)) — ifCy is “z:=&;C77
(<C2_, M2> — E/)’L and 3£€L.¢(MQ, .CC,@)

((C5, My) — X)L, otherwise.

If ¥ is empty, or if ¥ consists of only one state (stop, M), then X|; is
empty.6

Notice that, according to our threat model, assignments to both anchor
and working variables may generate observations to principals. Because an
anchor variable is tagged with a fixed label, always the same principals are
allowed to observe assigned values to that anchor variable. For a working
variable, however, different sets of principals are allowed to observe assigned
values during execution, because different labels may tag this variable during
execution.

Our enforcement mechanism ensures that sequences of observations do
not leak sensitive information to unauthorized principals.

3 Enforcement mechanism

We present a block-safe, true flow-sensitive mechanism that dynamically en-
forces labels on variables, (i) by redefining labels for working variables, given
labels for anchor variables, and (ii) by blocking executions that may subse-
quently violate these labels. True flow-sensitivity allows increased precision
in how labels are redefined. Block-safety prevents information leakage when
blocking insecure executions.

3.1 True flow-sensitivity

First we explain how our mechanism provides true flow-sensitivity. Labels of
working variables are redefined during execution depending on the sensitivity
of values that are stored in them (aka flow-sensitivity). A label of a working
variable must account for explicit and implicit flows of information. An
explicit flow is caused by the execution of an assignment where the value

50ne could have modeled the fact that all principals sense termination, by adding
one special observation at the end of all sequences of observations. However this special
observation is not necessary to prove the desired soundness theorem.

(S-Ski1P)

(skip, M) — (stop, M)

v=M() M(E) U M (pc).label U block’ © M (a)
block’ = M (block) LU M (&) LI M (pc).label
(S-Asanl) = ;
(a:=E&, M) — (stop, M[a — v, block — block'])

v=M(E) £=M(E)UM(pc).label ¢ = M(E) U M(pc).label

S-AsGN2 —
(S-Asenz) (w:=E&, M) — (stop, M[w— v,w— £, w—{])
Cr, M top, M’
(S—SEQI) <_1) - > — <S Op_ >/
<Cl;c2aM>_><C25M>
(S-S802) (CT, M) — (Cy, M) C,, # stop
(Cr;Cys M) — (CyiCy, M)
M(&E)#£0 V = targetWVar(Cs)
(S-1F1) d = anchorVar(Cz) pc’ = M (pc).push({(M(E), d, V))
i (if € then C; else C; end, M) — (C1;end, M[pc +— pc'])
M(E)=0 V = targetWVar(Cy)
(S-172) d = anchorVar(Cy) pc’ = M (pc).push((M (&), d, V))
i (if € then C; else C; end, M) — (C2;end, M[pc +— pc'])
(S-WL1) M(E)#0 pc’ = M(pc).push({M(E), false, 1))

(while £ do C end, M) — (C;end; while £ do C end, M[pc — pc'])

M(E)=0 V = targetWVar(C)
d = anchorVar(C) pc’ = M (pc).push((M(E), d, V))
(while £ do C end, M) — (end, M |[pc — pc'])

(S-WL2)

IF M (pc).top.d THEN block” = M (block) U M (pc).label ELSE block’ = M (block)

M’ =U(M, M(pc).top.V " = M (pe).
(S-Exp) (M, M(pc).top.V') — pc (pc).pop

(end, M) — (stop, M'[pc +— pc’, block +— block'])

Table 1: Enforcement mechanism

of the right hand-side expression explicitly flows to the target variable. An
implicit flow is caused by the execution of a conditional command, where the
value of the guard implicitly flows to the target variable of each assignment
in the branches. We further examine how our mechanism redefines labels
for working variables based on these two kinds of flows.

When assignment w := £ is executed, the value of expression £ explicitly
flows to w. So, the new value of w should be regarded at least as sensitive as
the value of £, and thus, the new label of w should be at least as restrictive as
the label of £. We denote with M (£) the label of an expression &, according
to memory M. M (E) is defined inductively:

- M(ﬂ) é J—v
— M(z) is by definition the label associated with z,
— M(& op &) = M(&1) UM(E).

The execution of a conditional command causes the value of its guard
to implicitly flow to target variables in the branches. So, the labels of
target variables in all branches (both taken and untaken branches) should be
properly redefined to account for the sensitivity of the guard. Specifically,
target working variables should become at least as sensitive as the value
of the guard. A program counter stack pc keeps track of the sensitivity
of the context of a command, which is the sensitivity of all guards that
control whether this command is executed. Whenever an execution enters
a conditional command, the label of its guard is pushed into M (pc), and
whenever an execution leaves a conditional command, the top element of
M (pc) is popped. The join of all labels in M(pc), which is denoted with
M (pc).label, is the sensitivity of the information used for the execution to
reach the current program point. If M (pc) is empty, then M (pc).label = L.
So, the label of a target working variable should be at least as restrictive as
M ((pc).label.

The strategy we follow to redefine the labels of target working variables
depends on whether the corresponding assignment is actually executed (e.g.,
belongs to the taken branch), or could have been executed (e.g., belongs to
the untaken branch). When assignment w := £ is executed in memory M,
the dynamic mechanism tags w with label M (E) U M (pc).label, because the
value of w possibly reveals information about £ and about the context in
which the assignment is executed (see the update of w in (S-AsaN2), Table

1).

10

Labels of target working variables that belong to the untaken branch of
an executed conditional command are silently redefined. When the execu-
tion of a conditional command ends, the labels of these working variables
are augmented with the labels of all guards that control the execution of
the corresponding assignments, or else, the labels of these working variables
are augmented with M (pc).label. To accomplish this, before entering a con-
ditional command, function targetWVar is used to collect all target work-
ing variables of the untaken branch.” These variables V are pushed onto
M (pc), together with the label of the corresponding guard. When finishing
executing a conditional command, and before popping the top element of
M(pc), the dynamic mechanism augments the labels of all variable in V
with M (pc).label, using function U.® Notice that function targetWVar im-
plements a light-weight, on-the-fly static analysis on the untaken branches of
executed conditional commands (see use of V' in (S-Ir1), (S-Ir2), (S-WL2),
and use of U in (S-END), Table 1).

The way we update labels of working variables at the end of a conditional
command is what gives true flow-sensitivity. Past work (e.g., [9, 5, 19, 13])
use similar techniques to provide true flow-sensitivity. Other approaches,
which are not true flow-sensitive (e.g, [7, 1]), use static analysis (either on-
the-fly or as a prepossessing stage) to augment labels of working variables
with labels that these variables would have taken if the untaken branch had
been executed, instead. This augmentation involves both M (pc).label and
labels of right hand-side expressions of assignments. So, a mechanism that
is not true flow-sensitive tags a working variable w with ¢; LI £5, at the end
of a conditional command, where ¢; is the redefined label of w due to taken
branch, and /5 is the redefined label of w due to untaken branch. Because we
augment these working variables only with M (pc).label, the redefined labels
are less conservative, leading to a more permissive mechanism. Considering
example (2), not true flow-sensitive approaches always tag w with H at the
end of the conditional command, whereas true flow-sensitive approaches tag
w with either H or L depending on the branch that is taken.

Static analysis of untaken branches is not the only way to provide true
flow-sensitivity. Purely dynamic mechanisms (e.g., [4, 5]), which do not
involve static analysis, can provide true flow-sensitivity, too. However, pre-
viously proposed purely dynamic mechanisms (e.g., [13, 28, 21]) are block-
unsafe, because they may leak sensitive information when deciding to block
insecure executions.

"targetWVar(C) 2 {w | “w := " € C}
87U is formally defined later in this section.

11

3.2 Block-safety

Now, we turn our attention to how our mechanism provides block-safety.
Assignments to anchor variables may cause violation of labels on variables,
when the fixed label of a target anchor variable is not at least as restrictive
as the label of the value that flows to that anchor variable. Our mechanism
blocks program execution before such insecure assignments. To provide
block-safety, we need to ensure that sensitive information used to check the
security of an assignment does not leak to unauthorized principals.

Indeed, an assignment check may depend on sensitive information. First,
this check is performed at a particular program point, before a particular
assignment. Also, this check involves the label of the target anchor variable
a of the assignment and labels of working and anchor variables whose value
flow to a. So, an assignment check may reveal sensitive information used:

1. to reach that program point, and
2. to redefine labels of these working variables.

As an example of point 1, consider the following command:
if h>0then!:=h else h :=lend;l:=1.

Here, checking assignment [:= h’ depends on the sensitive information
h > 0. If the mechanism is not careful, performing the check and deciding
to block that assignment may leak sensitive information h > 0 to [. This
is because, when h % 0, no check is performed, the execution terminates
normally, and thus, some principals observe 1 being assigned to [. However,
when h > 0, the check is performed, the execution is blocked, and thus, no
assignment to [is observed by these principals.

As an example of point 2, consider program (3). Checking the security
of assignment m’ := w depends on the label of w, which in turn depends
on the sensitive information m > 0. Again, as described in Section 1, if the
mechanism is not careful, checking the security of m’ := w and deciding to
block that assignment may leak sensitive information m > 0 to [.

Our block-safe mechanism guarantees that the sensitive information used
for assignment checks does not leak to unauthorized principals. The strategy
we follow is two-fold:

(i) Track the sensitivity of each check, by tracking the sensitivity of the
context in which this check is performed (to address point 1) and the
sensitivity of redefined labels used in this check (to address point 2),

12

(ii) Ensure that, at every execution point, the observations made by prin-
cipals do not violate the sensitivity of any check that precedes this
execution point.

For point (i), pc tracks the sensitivity of the context, and metalabels
track the sensitivity of redefined labels. For each variable x, we introduce
a metalabel z that represents the sensitivity of the information used to re-
define label z of x. In particular, metalabel z specifies the principals (i.e.,
those associated with a label at least as restrictive as z) that can learn z
without violating labels of input values (i.e., labels of anchor variables). So,
M (z) is a label (M(z) € L) that protects M (x), the same way M (z) pro-
tects M (z). Metalabels of anchor variables are by default the bottom label
1, because their labels never change, and so they cannot encode sensitive
information. Metalabels of working variables are redefined whenever labels
for these variables are redefined, which happens whenever new values are
assigned to these working variables.

We explain how metalabels of working variables are redefined. We saw
that when assignment w := &£ is executed in memory M, label w of w
becomes M (E) U M(pc).label. Redefining the label of w is based on the
label of £ and on the context in which this assignment is executed. So, the
redefined label of w is at least as sensitive as the label of £ and the context.
Thus, the metalabel of w should be at least as restrictive as the metalabel
of & and M (pc).label. So, the metalabel of w becomes € LI M (pc).label (see
update of w in (S-ASGN2)), where £ is defined inductively:

B M(Q) = J—7
~ M(a) £ 1, M(w) is by definition the metalabel associated with w,
- M(ELop&y) = M(E) U M(Ey).

Notice that, when assignment w := £ is executed, £ accounts for the infor-
mation that explicitly flows from & to w, while M (pc).label accounts for the
information that implicitly flows from the context to w.

To capture all implicit flows of information from the context to labels,
our mechanism silently redefines the metalabels of target working variables
found in untaken branches. Consider the following example:

w :=1[; if m > 0 then w := h else skip end.

Sensitive information m implicitly flows to w. So, w should be at least as
sensitive as m, and thus w should be redefined to at least M by the end of all

13

executions of this command. If m > 0, and assignment w := h is executed,
then, as we saw in the previous paragraph, m becomes HLIM, which is at least
as restrictive as M. If m ¥ 0, then our mechanism silently redefines w to wlLIM.
Using function U?, both metalabels and labels of target working variables
in untaken branches are augmented with the sensitivity M (pc).label of the
context.

We can now formally characterize the sensitivity of an assignment check
(i.e., point (i)). When assignment a := £ is next to be executed, it should
be checked whether the label of a is more restrictive than the label of &
(to prevent explicit flows) and more restrictive that M (pc).label (to prevent
implicit flows). The evaluation of this check depends on the label £ of
&, and on the context of the assignment. So, principals allowed to learn
the result of this check are those allowed to learn both the value of £ and
information about the context. Thus, the evaluation of this check is at least
as sensitive as £ and the context. Thus, the sensitivity of this assignment
check is £ U M (pc).label.

For point (ii), we use a variable block [7, 1] to ensure that the sensitivity
of checks is not violated by subsequent observations. Specifically, whenever
a check is performed, block is augmented with the sensitivity of this check,
which is the join of the metalabels of all labels involved in this check and the
label of the context in which this check is performed (see update of block in
(S-AGN1)). So, at every execution point, block represents the sensitivity of
all checks that determine whether the execution will reach that point or be
blocked earlier.

Variable block is used by our mechanism to decide which observations will
be generated for which principals. According to Section 2, observations are
generated when values are assigned to anchor or working variables. When
assignment a := £ to an anchor variable a is executed, the fixed label that
tags a dictates principals that can observe values being assigned to a. The
assignment of a value to an anchor variable is allowed to be observed, only
if the label of this anchor variable is more restrictive than block. Otherwise,
information used to evaluate previous checks would be leaked to less sensitive
anchor variable, and thus, to principals not authorized to learn anything
about this information. Thus, if the label of a target anchor variable is
not at least as restrictive as block, the execution blocks before executing the
corresponding assignment. So, now, each decision to block an execution also
involves block (see (S-AscN1)).10

“Function U is defined as follows:
UM, V)& MNz eV : M(z) = M(z) UM (pc).label, M(z) = M(z) U M (pc).label]
OFor clarity, we write both M (pc).label and block’ in restriction M (£) LI M (pc).label U

14

Observations generated by assigning values to working variables are re-
stricted by variable block, too. The assignment of a new value to a working
variable w is observed only by principals whose label is at least as restrictive
as the redefined label of w, and variable block. Notice that an assignment
to a working variable is always executed, but our mechanism restricts the
principals that make the corresponding observation.

In general, a principal is allowed to observe a value being assigned to an
anchor or working variable z, only if her label is more restrictive than both
M(x) and M (block). Thus, predicate ¢(M,z,¢), which was presented in §2
and which defines observations allowed to be made by principals associated
with ¢, is defined to be:

&(M,z,0) = M(z) U M (block) C ¢. (4)

This concludes point (ii) of our strategy.

Sensitive information used to compute block should not leak to unautho-
rized principals. Variable block may be updated in a conditional command
with a sensitive guard. So, the value of block may be different at the end of
this conditional command, depending on the branch that is taken. To cap-
ture implicit flows from a sensitive context to variable block, our mechanism
silently redefines block at the end of conditional commands, by augmenting
block with M (pc).label. When the execution enters a conditional command,
we use function anchorVar to find whether there is an assignment to an-
chor variables in the untaken branch, and thus, whenever block could have
been updated in the untaken branch.'* We push onto pc this truth value d.
When exiting a conditional command, if the top element of pc has d = true,
then block is updated with M (pc).label. So, pc is actually a stack of triples,
where each triple contains a label, a truth value d, and a set V' of work-
ing variables.'? Notice that function anchorVar implements a light-weight,
on-the-fly, static analysis of the untaken branches (see use of d in (S-IFl),
(S-Ir2), (S-WL2), and update of block in (S-END)).

Table 1 contains the operational semantics for executing a program under
our true flow-sensitive and block-safe mechanism.

block’ © M (a), even though we have M (pc).label C block’, which implies M (pc).label L
block’ = block’.
YanchorVar(C) £ Is there any “a := £” in C?
2 M (pc).label is formally defined as:
M (pc).label 2 Lo, a, vyepe &
M(pc).push({¢, d, V)) pushes element (¢, d, V) on the top of stack M(pc) and returns
the resulting stack.
M (pc).pop pops the top element of stack M (pc) and returns the resulting stack.
If M (pc).top is (¢, d, V'), then M (pc).top.d is d and M (pc).top.V is V.

15

3.3 Examples

Now, we discuss how our mechanism handles particular small examples.
First, consider example (1). Our mechanism enters this loop only once. If
w = h, then using rule (S-ASGN1) the execution is blocked at assignment
" :== h, because anchor variable I’ is not at least as restrictive as h. If w # h,
then due to (S-IF2) and (S-END), block becomes H after the if command.
Then, assignment w := w + 1 is executed according to rule (S-AsGN2). But
assignment [:= w is blocked due to (S-ASGN1) and the fact that label L of
[is not more restrictive than label H in variable block. In both executions,
no observation is generated to principals associated with L, and thus, h does
not leak to these principals. In particular, blocking the execution of this
program in different points, depending on h, does not leak h.

Next, consider example (3). If m > 0, then using (S-ASGN2), w and
w become M. So, due to (S-ASGN1), assignment m’ := w is allowed to be
executed, while block is being updated to w, which is M. Next assignment
I := 1 is not executed, due to (S-ASGN1), where label L of [is not at least
as restrictive as label M in variable block. If m % 0, then using (S-ASGN2),
w becomes H and w becomes M. Next assignment m’ := w is blocked due to
(S-AsGN1), where label M of m’ is not at least as restrictive as label H of w.
Thus, blocking the execution of this program in different points, depending
on the label of w, which depends on sensitive information m, did not leak
m to principals associated with L.

Finally, consider the following program:

if m > 0 then w := h else w := I’ end;
h = w;
[:=1.

This program is secure. However, our mechanism would block all executions
of this program before assignment [:= 1. This is because, w becomes M, at
the end of the conditional command, block becomes M after e}Zecuting h:=w,
and the label L of target anchor variable [is not at least as restrictive as block.
So, our mechanism conservatively deduces that the label w of w depends on
m, even though, in reality, there is no such dependency (w becomes H in
both branches).

4 Soundness

We prove soundness of our mechanism by showing that programs executed
under our mechanism (Table 1) satisfy noninterference for an arbitrary lat-

16

tice of labels. We prove that commands allowed to be executed and actions
taken by our mechanism do not leak sensitive information to observations
made by unauthorized principals. The actions taken by our mechanism that
may affect observations are (i) redefinition of labels for working variables,
and (ii) blocking of insecure executions. So, we prove that redefining la-
bels and deciding to block executions do not leak information. We are not
concerned with information leakage introduced by divergence of while-loops
that exist in a program. Thus, we prove noninterference for the set of finite-
length traces that either terminated normally, or were blocked.

Previous work on true flow-sensitive mechanisms [9, 4, 12, 13, 28, 25],
which block insecure executions, enforce noninterference only for the set
of normally terminated traces. These mechanisms may leak information
through traces that are blocked, and thus, we characterize them as block-
unsafe. By enforcing noninterference for both normally terminated and
blocked traces, we show that our mechanism is block-safe, meaning that
it does not introduce information leakage through blocking executions.'?

We prove noninterference with respect to a particular label ¢ (¢ # L) in
lattice (£, C). A value tagged with ¢ may flow only to principals associated
with a label at least as restrictive as /. We denote with 1¢ the set of labels
that are at least as restrictive as ¢, and with 1/ the complement of 1/ with
respect to L. Values tagged with labels in 1¢ are considered sensitive with
respect to £, and values tagged with labels in 17 are considered not sensitive
with respect to £. Sensitive values with respect to £ should not flow to
principals associated with labels in 1£.

Noninterference states that changing values of variables tagged with 14
should not cause changes of observations made by principals associated with
1¢. Equivalently, if two traces 31, Yo of the same command C start with
memories My, Ms (correspondingly) that agree on variables tagged with 17,
without necessarily agreeing on variables tagged with 14, then the observa-
tions that principals associated with ¢ can make should be the same for
these two traces:

21 ‘77 = 22‘17

By proving noninterference with respect to observations, which are defined
based on fixed and redefined labels on variables, we show that our mechanism

13This previous work 19, 4, 12, 13, 28, 25] was proving termination-insensitive nonin-
terference (TINI), ignoring all termination channels, both those generated by diverging
loops and those introduced by the enforcement mechanism. In this work, we ignore ter-
mination channels generated by diverging loops, but we address channels that could have
been introduced by our mechanism. It can be argued that we also prone TINI, but for a
larger set of traces (a set that contains blocked traces).

17

does not introduce information leakage through redefining labels for working
variables.

The challenging part for formally stating noninterference for our model
is to split a memory M into two partitions: partition M|, contains infor-
mation regarded sensitive with respect to ¢, and partition M ‘T7 contains
information regarded not sensitive with respect to ¢. Clearly, the former
partition contains values that are stored in variables tagged with 14, and
the latter contains values that are stored in variables tagged with 1¢. But a
memory, apart from values, it also stores labels, metalabels, pc, and block.'*
All these components encode information. Thus, we need to decide to which
of the two above partitions these components belong; we need to decide their
sensitivity with respect to /.

To formally state noninterference, it suffices to define M |T7’ that is, the
part of M that must not be influenced by information of level £ or above.
We explain the construction of M |T7 by defining the sensitivity of all possible
components that may appear in a memory.

Deciding the sensitivity of values and labels is straightforward. The
sensitivity of a value in variable x is represented by label z. So, if £ Z M (z),
then value M (z) is not sensitive with respect to ¢, and thus, pair (x, M (z))
is added in partition M |T7‘ The sensitivity of a label z is represented by
metalabel z. So, if ¢ £ M(z), then pair (z, M(z)) is added in partition
M’W.

What is the sensitivity of metalabels? Indeed, the value of a metalabel
may depend on sensitive information. Consider the following example:

if m > 0 then
if b > 0 then w := 0 else skip end

else (5)
w:=1

end

At the end of the outer conditional command the metalabel of w may be
H or M depending on m. So, the value of w depends on m, and thus the
sensitivity of w is M. In general, we decide whether a pair (z, M(z)) belongs
to M‘W by just examining the value M (z) of metalabel z. Ifey M(g), then
M (z) is not influenced by values tagged with 1¢, and thus, M (z) is regarded

not sensitive with respect to £.1° So, if ¢ £ M(z), then pair (z, M(z)) is

The formal definition of a memory M is found in the Appendix.
15 Assume for contradiction that M (z) is influenced by a value tagged with 1£. This

18

added in M ’T7' Notice that, we do not provide additional machinery to keep
track of the sensitivity of metalabels; the sensitivity of a metalabel is given
by the metalabel itself.

The pc itself can be influenced by sensitive information. Consider the
following example:

if m > 0 then w := m else w := h end;

(6)

if w > 0 then v’ := 1 else v’ := 2 end.

Here, when entering the second conditional command, pc may contain either
M or H depending on the label of w, which depends on m. Again, we use
the value of M(pc).label to decide whether pc belongs to M|gm. 1If £
M ((pc).label, then pair (pc, M (pc)) is added in M’TZ'

The larger M ‘T7 is, the stronger the statement of noninterference be-
comes. In an effort to construct the largest possible partition M |ﬁ, even
when ¢ T M (pc).label, we include in M’Te parts of pc that do not depend
on sensitive information relative to £. Specifically, if the label of a substack
of pc is not more restrictive than ¢, then it is not influenced by sensitive
information relative to £. We write pc.pop™ to represent a substack of pc,
created by popping the n top elements of pc. Here, n may range from 1 to
the size of pe. Thus, if £ Z M(pc).pop™.label, then (pc.pop™, M (pc).pop™)
is added in M.

Finally, the value of block may depend on sensitive information, too. In
the following example:

if m > 0 then

if h > 0 then w := 0 else skip end
else

w:=1
end

a = w

the value of block that is considered for checking assignment a := w is either
M or H, depending on the metalabel of w, which depends on m. Similarly
to the previous cases, if ¢ £ M (block), then (block, M (block)) is added in
M.

10

means that M(z) is constructed in a conditional command whose guard is tagged with
1£. But, due to rule (S-Asgn2), M(z) should be more restrictive than £. Contradiction,
because £ [Z M (z).

19

Consequently, M ’T7 is defined as follows:

Mg ={{x, M(x)) | € £ M(z)}U (8)
{(z, M(z)) [£ M(z)}uU (9)
{{z, M(2)) [€ Z M(z)}V (10)
{{pe, M(pc)) | £ L M (pc).label }U (11)
{(pc.pop™, M(pc).pop") (12)

| £ L M(pc).pop™.label }U
{(block, M (block)) | £ £ M (block)}. (13)

Notice that labels of anchor variables always belong to M |T7‘ This is because
metalabels of anchor variables are always L (see Section 3), and thus con-
dition ¢ Z M (z) in line (9), where ¢ # L, always holds for anchor variables.

We prove that programs executed under our operational semantics sat-
isfy noninterference. The Theorem below considers two traces of the same
command C, which start from memories M and M’ that are properly ini-
tialized. A memory M is properly initialized if and only if:

- Vo.M(z) =1,
— M (pc) is empty, and
— M(block) = L.

Theorem 1. Consider a label £, a command C, and properly initialized
memories M, M'.
If Mlgg = M'ls, & = (C, M) = My, and ¥ = (C, M') = M], then

The proof of Theorem 1 is found in the Appendix.'® This proof involves a
lemma (Lemma 4) worth mentioning. This lemma states that, if a command
is executed on a properly initialized memory, then, during execution, the
label of a variable is always more restrictive than the metalabel of that
variable:

M(z) C M(z). (14)

This means that the value of a variable is always more sensitive than the
label of that variable. We will see, in Section 5.2, how this lemma is used
for deriving a simpler enforcement mechanism for H and L labels.

6Because M and M’ are properly initialized, deciding M |T7 =M I|T7 for the last four
subsets of M|z (i.e., lines (10), (11), (12), and (13)) and M'[57 is trivial. This triviality
vanished once we try to prove the inductive case.

20

5 Discussion

5.1 Hybrid Enforcement

Some of the run-time overhead introduced by our mechanism can be elim-
inated, if we statically preprocess programs. Instead of checking dynami-
cally before every assignment to anchor variables if labels are violated, the
preprocessing stage would decide which assignments need to be checked dy-
namically, by inserting the proper check, and which assignments are always
secure, in which case there is no need for checking. The more precise infor-
mation about labels tagging variables this stage collects, the more excessive
dynamic checks would be eliminated.

A preprocessing stage would also eliminate the run-time overhead of de-
ciding whether labels, metalabels, and variable block need to be silently rede-
fined at the end of conditional commands. Specifically, function targetW Var
and anchorVar would be called during this preprocessing stage. The pro-
gram code could then be augmented with updates to particular labels and
metalabels that should be performed at run-time. This implies that the
resulting mechanism would not need to keep track of V' and d, simplifying
the structure of pc. Consequently, the existence of a preprocessing stage
would leave the dynamic analysis with only updating labels and checking
suspicious assignments to anchor variables.

5.2 Enforcing labels H and L

We show how to derive a simplified, true flow-sensitive and block-safe en-
forcement mechanism for two-element lattice ({H,L}, C), with L C H, from
our mechanism. Previous work [7] on block-safe mechanism for H and L
labels did not provide true flow-sensitivity.

When our mechanism enforces only labels H and L, redefined labels of
working variables do not depend on sensitive values (i.e., values tagged with
H). Suppose we want to differentiate the label of a working variable between
H and L, based on a variable tagged with H. Consider the following example:

if i/ > 0 then w := h else w := [end.

The goal is to encode sensitive information 4’ > 0 in the label of w. However,
using our mechanism, the label of w will be always H at the end of the
conditional command (if A’ > 0, then w becomes b’ LI h, which is H, and if
h' # 0, then w becomes A’ LI, which is again H). This example indicates that
under our enforcement mechanism, redefining labels for working variables

21

v=M(E) M (&) U M(pc).label L block’ = M (a)
block’ = M (block) LU M (pc).label
(a:=&, M) — (stop, Ma > v, block — block'])

(S-AscNl)

v=M(E) L= M(E)U M((pc).label
(w:=E&, M) — (stop, M[w+— v,w — {])

(S’-AsaN2)

Table 2: Simplified rules for enforcing only labels H and L.

does not depend on sensitive information, when only two labels are used.
Thus, there is no need to use metalabels to capture the sensitivity of labels.

Here is another reason why metalabels are not needed for enforcing H and
L labels in a true flow-sensitive and block-safe way. Recall that one of the
lemmata used to prove Theorem 1 dictates: M (z) C M (z). If M(z) is rede-
fined based on sensitive information, then M (z) ought to be H. But if M (x)
is H, then from the above restrictiveness relation M (z) should necessarily be
H. So, if M(z) is computed based on sensitive information, then the value
of M(zx) is always H; M (z) cannot change when this sensitive information
changes. Thus, label M (z) cannot be used to leak sensitive information.
Consequently, there is no need to use metalabels to capture the sensitivity
of labels.

A true flow-sensitive and block-safe enforcement mechanism for H and L
is derived from our mechanism by omitting the use of metalabels. Figure 2
contains which rules from Figure 1 should be modified and how. Variable
block is still needed to track the sensitivity of assignment checks. In this case,
the sensitivity of a check is simply the sensitivity of the context in which
this check is performed. So, block is updated with the value of M (pc).label,
whenever a check on labels is performed. We prove in the Appendix that
if rules (S-AscaN1) and (S-AsGN2) are substituted with (S’-AsGN1) and
(S’-AsGN2), then the resulting operational semantics satisfy Theorem 1,
meaning that the resulting mechanism is block-safe. Notice that the derived
mechanism is no longer block-safe when trying to enforce labels from an
arbitrary lattice.

6 Related Work

In this paper, we presented a dynamic mechanism that blocks insecure ex-
ecutions. Our mechanism is block-safe, because it does not leak informa-

22

FSD True Block.
mecha- Multilevel flow-
. .. safe
nisms sensitive
[9],[4],[12],
n3l2sLzs] Y d 8
[5],[21] X v X
[7] X X v
1] v X v
modify,
[23],[12] X v skip
[11] v 4 diverge
[24] X v diverge
[29] v X tracking
[19],[20] X v tracking
8] v v tracking

Table 3: Comparison of related work on FSD mechanisms

tion when blocking execution, true flow-sensitive, and multilevel, because
it enforces multiple labels (instead of only H and L). In past work, en-
forcement mechanisms had a (strict) subset of these three attributes (i.e.,
block-safe, true flow-sensitive, and multilevel). Table 3 summarizes previous
language-based, FSD mechanisms for information flow control in terms of
these attributes. In Table 3, we also include hybrid mechanisms, which first
statically analyze programs and then monitor their execution. If a mech-
anism has the attribute of the corresponding column, we mark it with v/,
otherwise we mark it with x. When attribute “Block-safe” is not applica-
ble for a mechanism (because the mechanism does not block executions),
we clarify the action that is taken by that mechanism to address insecure
commands (i.e., “modify”, “skip”, or “diverge”). We write “tracking”, if a
mechanism does not take any action, and it simply updates variables with
proper labels.

Some of the entries of Table 3 (i.e, [9], [4],[13], [28], [5],[21]) that are
not block-safe (marked with x at “Block-safe” column) are based on the
techniques of no-sensitive-upgrade (NSU) and permissive-upgrade (PU). En-
forcement mechanisms that use these techniques have been examined by
Bielova and Rezk [10], who characterized these mechanisms as not termina-
tion aware.'” The authors use knowledge-based semantics to show that the

1"The authors actually use the term termination aware noninterferent (TANT) mecha-

23

attacker’s knowledge may increase when programs are executed under these
mechanisms (comparing to the attacker’s knowledge before running the pro-
gram). We believe our mechanism is termination aware. The authors of this
paper also compare the transparency and precision of several mechanisms.
In future work, we plan to compare the transparency and precision of our
mechanism with respect to the mechanisms considered in that paper.

Secure multi-ezecution (SME) [17] is a flow-sensitive dynamic mecha-
nism that enforces information flow labels by simultaneously executing the
same program as many times as the number of labels. An execution that
corresponds to a label £ sees the actual values, when these values are tagged
with labels at most as restrictive as £, and it sees dummy values, otherwise.
Using faceted values [6], which is a tuple of values, each one correspond-
ing to a different label, one can use one execution to simulate the set of
executions generated by SME. These two approaches are precise and do
not introduce information leakage. However, the run-time overhead they
introduce increases with the number of different labels that may be used.

We are not the first to tag labels with labels. In a purely dynamic
context, Buiras et al. [11] use fixed labels on labels to capture the implicit
flow of information caused by conditional commands. In our paper, we use
a light-weight on-the-fly analysis to capture this implicit low. Then, we use
mutable metalabels to provide block-safety. The mechanism presented by
Buiras et al. [11] cause insecure executions to diverge instead of blocking. In
this mechanism, sensitive information used to decide whether an execution
should diverge may be leaked to the termination channel. In this context,
the practicality of diverging, instead of blocking, an execution needs to be
carefully examined.

Tagging labels with labels have been also used in flow-insensitive, mostly
static mechanisms [31], where labels are treated as first-class values. There,
it is the programmer’s responsibility to come up with the correct labels and
the appropriate checks before commands. On the contrary, our mechanism
is dynamic, it automatically redefines labels and metalabels for working
variables, and it automatically inserts dynamic checks.

Static language-based approaches have been proposed for controlling in-
formation flow, too. Volpano et al. [30] first introduced a static type system
for information flow control, based on Denning’s lattice model [16, 14, 15].
Sabelfeld and Myers [27] examine certain static language-based approaches
(in addition to other approaches). Hunt and Sands [22] introduce flow-
sensitivity in static mechanisms. Russo and Sabelfeld [26], then, compared

nism.

24

flow-sensitive static mechanisms with flow-sensitive dynamic mechanisms.

7 Conclusion

This paper presented a dynamic enforcement mechanism for information
flow control that is multilevel, true flow-sensitive, and block-safe. Com-
bining these three attributes was challenging and it was not provided by
previous work. Our mechanism offers increased permissiveness, due to true
flow-sensitivity, without introducing information leakage when blocking ex-
ecutions, due to block-safety.

For block-safety, we employed metalabels along with a variable block to
keep track of the sensitivity of information used to decide whether an exe-
cution should be blocked. We then allowed principals to make observations
only when this sensitivity is not violated. We showed that metalabels them-
selves cannot be used to leak sensitive information, and thus, there is no
need to add meta-metalabels.

We proved that programs executed under our mechanism satisfy nonin-
terference. Our threat model allows principals to make observations during
the execution of a program, in which case a mechanism that in not block-safe
would leak an arbitrary amount of sensitive information. So, we proved that
observations made by unauthorized principals throughout normally termi-
nated or blocked traces are not influenced by initial sensitive values.

To the best of our knowledge there has not been proposed an FSD mech-
anism that is termination sensitive, true flow-sensitive and multilevel. So, as
a next step, we are planning to extend our mechanism to enforce termination
sensitive noninterference, which is noninterference for all traces of a program
(i.e., normally terminated, blocked, and diverging traces). Also, noticing
that past work on FSD mechanisms does not formally handle arbitrary re-
classifications (i.e., declassifications and classifications), we are planning to
use our mechanism to enforce richer information flow labels that can specify
arbitrary reclassifications. Finally, we would like to examine whether actions
“skip” and “modify”, which are used by some FSD mechanisms to skip or
modify insecure commands, introduce new covert channels. We are inspiring
of a theorem stating that “skip” or “modify” actions do not leak sensitive
information encoded in labels of working variables, and thus metalabels are
not needed to provide noninterference for finite traces.

25

Acknowledgments

We are deeply thankful to Fred B. Schneider for encouraging us to use the
idea of metalabels and for giving us valuable comments on earlier versions
of this work.

References

1]

A. Askarov, S. Chong, and H. Mantel. Hybrid monitors for concurrent
noninterference. In 2015 IEEE 28th Computer Security Foundations
Symposium, pages 137-151, July 2015.

A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In Proceedings
of the 13th Furopean Symposium on Research in Computer Security:
Computer Security, ESORICS 08, pages 333-348, Berlin, Heidelberg,
2008. Springer-Verlag.

A. Askarov and A. Sabelfeld. Tight enforcement of information-release
policies for dynamic languages. In 2009 22nd IEEE Computer Security
Foundations Symposium, pages 43-59, July 2009.

T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security, PLAS *09, pages
113-124, New York, NY, USA, 2009. ACM.

T. H. Austin and C. Flanagan. Permissive dynamic information flow
analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security, PLAS ’10, pages 3:1—
3:12, New York, NY, USA, 2010. ACM.

T. H. Austin and C. Flanagan. Multiple facets for dynamic informa-
tion flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL "12; pages
165-178, New York, NY, USA, 2012. ACM.

A. Bedford, S. Chong, J. Desharnais, and N. Tawbi. A progress-sensitive
flow-sensitive inlined information-flow control monitor. In IC'T Systems
Security and Privacy Protection: 31st IFIP TC 11 International Con-
ference, SEC 2016, Ghent, Belgium, May 30 - June 1, 2016, Proceed-
ings, pages 352-366, Cham, 2016. Springer International Publishing.

26

8]

[10]

[14]

[15]

[16]

[17]

L. Beringer. End-to-end multilevel hybrid information flow control. In
Programming Languages and Systems: 10th Asian Symposium, APLAS
2012, Kyoto, Japan, December 11-13, 2012. Proceedings, pages 50-65,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Generalizing
permissive-upgrade in dynamic information flow analysis. In Proceed-
ings of the Ninth Workshop on Programming Languages and Analysis
for Security, PLAS14, pages 15:15-15:24, New York, NY, USA, 2014.
ACM.

N. Bielova and T. Rezk. A taxonomy of information flow monitors. In
Principles of Security and Trust: 5th International Conference, POST
2016, Held as Part of the Furopean Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings, pages 46—67, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

P. Buiras, D. Stefan, and A. Russo. On dynamic flow-sensitive floating-
label systems. In Proceedings of the 2014 IEEE 27th Computer Security
Foundations Symposium, CSF 14, pages 65—-79, Washington, DC, USA,
2014. IEEE Computer Society.

A. Chudnov and D. A. Naumann. Information flow monitor inlining.
In 2010 23rd IEEE Computer Security Foundations Symposium, pages
200-214, July 2010.

A. Chudnov and D. A. Naumann. Inlined information flow monitoring
for javascript. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, pages 629-643,
New York, NY, USA, 2015. ACM.

D. E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236-243, May 1976.

D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504-513, July 1977.

D. E. R. Denning. Secure information flow in computer systems. PhD
thesis, Purdue University, West Lafayette, IN, USA, 1975.

D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In Proceedings of the 2010 IEEE Symposium on Security

27

[22]

23]

[24]

[25]

[27]

and Privacy, SP ’10, pages 109-124, Washington, DC, USA, 2010. IEEE
Computer Society.

J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11-20, 1982.

G. L. Guernic. Precise dynamic verification of confidentiality. In Pro-
ceedings of the 5th International Verification Workshop, 2008.

D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information
flow control for a javascript-like language. In 2015 IEEFE 28th Computer
Security Foundations Symposium, pages 351-365, July 2015.

D. Hedin and A. Sabelfeld. Information-flow security for a core of
javascript. In Proceedings of the 2012 IEEE 25th Computer Security
Foundations Symposium, CSF 12, pages 3—18, Washington, DC, USA,
2012. IEEE Computer Society.

S. Hunt and D. Sands. On flow-sensitive security types. In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’06, pages 79-90, New York, NY,
USA, 2006. ACM.

G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt. Automata-
based confidentiality monitoring. In Proceedings of the 11th Asian Com-
puting Science Conference on Advances in Computer Science: Secure
Software and Related Issues, ASIAN’06, pages 75-89, Berlin, Heidel-
berg, 2007. Springer-Verlag.

J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dy-
namic security monitors. Comput. Secur., 31(7):827-843, Oct. 2012.

S. Moore and S. Chong. Static analysis for efficient hybrid information-
flow control. In Computer Security Foundations Symposium (CSF),
2011 IEEE 2jth, pages 146-160, 2011.

A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proceedings of the 2010 23rd IEEE Computer Security
Foundations Symposium, CSF ’10, pages 186-199, Washington, DC,
USA, 2010. IEEE Computer Society.

A. Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEFE J.Sel. A. Commun., 21(1):5-19, Sept. 2006.

28

28]

A

For

J. F. Santos and T. Rezk. An information flow monitor-inlining com-
piler for securing a core of javascript. In ICT Systems Security and
Privacy Protection: 29th IFIP TC 11 International Conference, SEC
2014, Marrakech, Morocco, June 2-4, 2014. Proceedings, pages 278-292,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring
to secure information flow. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium, CSF 07, pages 203217, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4(2-3):167-187, Jan. 1996.

L. Zheng and A. C. Myers. Dynamic security labels and static infor-
mation flow control. Int. J. Inf. Secur., 6(2):67-84, Mar. 2007.

Appendix
mally, memory M consists of the following mappings:
M,V — int,
My : {z|r € V} = L,
My :{z|x € V} — L,

My : {pc} — Stacks,
Mblock : {block} — L.

The statement of Proposition 3 below considers two initial states whose

memories M, M’ satisfy the following predicates:

— healthy(M) £ Vz.M(z) & M(z)
— consistent(M, M',¢) £ for all n > 0,

— M (pc).pop™.top.d N = M (pc).pop™.label =
¢ C M'(block) or
M’ (pc).pop™.top.d A € T M'(pc).pop™.label,
— w € M(pc).pop™.top.V NL T M(pc).pop™.label =
LC M (w)ANC M (w) or
w € M (pc).pop™.top.V AL T M (pc).pop™.label.

29

The same for M’ and M.

The last predicate formalizes the role that d and V play at each element of
the pc stack. In particular, if d is true in an element of pc at one execution,
and if the label of pc up to that element is more restrictive than ¢, then
it means that the other execution involves dynamic checks in context more
restrictive than ¢, which raises block of that second execution to be at least
as restrictive as £. In a similar fashion, if w belongs to V' in an element of pc
at one execution, and if the label of pc up to that element is more restrictive
than ¢, then it means that the other execution involves assignment to w
in context more restrictive than ¢, which raises w and w of that second
execution to be at least as restrictive as £. Notice that if M and M’ are
properly initialized, then healthy (M), healthy(M'), and consistent(M, M', ¢)
hold.

Theorem 1. Consider a label ¢, a command C, and properly initialized
memories M, M’'.

If Mlzg = M|y, £ = (C, M) = My, and X' = (C, M') = M, then
Z|T7 =Y |T7'

Proof. Memories M and M’ are properly initialized, and thus, healthy (M),
healthy(M'), and consistent(M, M’,¢) hold. So, we can instantiate Propo-
sition 3, with label ¢, command C, and memories M, M’.

It Mlzg = M|z, & = (C, M) = My, and ¥/ = (C, M’) = My, then
conclusion [c0] of Proposition 3 gives us |57 = ¥'|5. O

Lemma 2. Each observation (x, M(x)) in X5 is produced when formula

3¢ € 10.M(x) U M (block) T ¢ holds. An equivalent, and simpler formula
(which is used for the proofs) is: € IZ M(z) L M (block).

Proof. =: if £ C M(z) U M (block) then M (z) U M (block) € 14, thus any ¢’
such that M (x) U M (block) C ¢’ belongs to 14, and hence is not in /.

<: if £ [Z M(x) U M(block) then ¢ = M(z) LI M (block) € 1 satisfies the
left-hand side. O

Proposition 3. Consider a label £, a residual command C~, and memories
M, M’, such that healthy(M), healthy(M'), consistent(M, M’ ().

Assume Mgy = M'|zz, and £ = (C™, M) = M; and X' = (C~, M') = M{,
where (C;, My) is the last state of X and (C,, M{) is the last state of X'
Then:

30

cl If¥ and X' terminate normally, then M|z = M{|57 and consistent(My, My, £).

c2 If X' terminates normally, and X is blocked due to rule (S-ASGN1),
and ¢ © M;(block’), then ¢ T Mj(block). We write My(block’) for
My (block) U M(E) U My(pc).label.

c3 If ¥/ terminates normally and ¢ Z M(pc).label, then there exists M|

such that (C=, M) 5 (C;, M/} is a prefix of ¥’ and M|z = M{'|5-

Proof. Structural induction on C~.

Case 1. a:=¢&

We first prove the second part of c1; afterwards, we prove c0-c3 by cases.

If both X2 and X' terminate, My(pc) = M (pc), M{(pc) = M'(pc), M¢(block) =
M (block), M](block) = M'(block), YVw.M(w) = M(w), Yw.M;(w) = M'(w),
Vw.M(w) = M(w), and Yw.M(w) = M'(w).

Because consistent(M, M', £), from the above we also get consistent(M;, M}, 0).
We also have M(a) = M'(a): by definition, ¢ Z M(a) = M'(a) = L, which
implies a € dom(M|z7), and because M|z = M'|z, we have M(a) = M'(a).

Case 1.1. Let £ [Z M(a) = M'(a). We first prove that the command is
executed normally in both memories or blocked in both memories. W.l.o.g.,
assume that the command is executed normally in M. That is, M(E) U
M (pc).label L M (block’) € M (a), where M (block’) = M (block) U M(E) U
M (pc).label. B
This implies that £ is not less restrictive than any members of the supremum,
that is, £ Z M(E), £ Z M(pc).label, and ¢ Z M (block’); thus, £ Z M (block)
and £ Z M(E). Hence the labels involved in these expressions are in Mg
Then, because M| = M'|5, they are also in M'|z; and the two memories
agree on them, that is, M(E) = M'(E), M(pc) = M'(pc), M(block) =
M(block), M(E) = M'(E), and M(E) = M'(E).

So, M(block’) = M'(block’), and M(a) = M'(a) by the argument above.
Thus, M'(E) U M'(pc).label LI M'(block’) T M'(a), as wanted.

Case 1.1.1. The command is executed normally in both memories. Then
Y= {(a:=&, M) — (stop, M[a > M(E), block — M (block’)]), and

Y ={(a:=E& M') — (stop, M'[a — M'(E), block — M’ (block’)]).

We have Ll = Y| = (a, M(E)) because M(E) = M'(E). Thus, [c0]
holds.

Also, we have Mi(a) = M/{(a) and M(block) = M](block). Hence [c1],[c3].
Finally, [c2] is trivially true.

31

Case 1.1.2. Both traces are blocked. Then Y| = X[= ¢, [c0]. Finally,
[c1], [2], [e3] are trivially true.

Case 1.2. Let £ C M(a) = M'(a).

Then £ T My(a)UM,(block), and hence, by Lemma 2, we have X5 = Y| =
€. [c0]

Because { & M(a) = My(a), we have a & My|z, and hence, we only have to
check variable block to prove [cl].

Case 1.2.1. Let £ IZ My(block) = M (block) U M(E) U M (pc).label and both
3, Y terminate. B

Then, ¢ L M (block), ¢ Z M(E), £ L M(pc).label.

Because M|z = M'lz, L L M (block), £ Z M'(E), and £ Z M'(pc).label.
Also, M (block) = M'(block), M(E) = M'(E), and M (pc).label = M'(pc).label.
So, M/(block) = M;(block) and £ Z M/ (block).

Thus, Milzz = M{l5. [el], [c3]

[c2] is trivially true.

Case 1.2.2. Let £ T My(block) and both ¥, ¥ terminate.

By symmetry of the preceding case, £ & M](block).

So, My|sz = Mz, since block is not in their domain. [c1],[c3]
[c2] is trivially true.

Case 1.2.3. Let X/ terminate and ¥ does not.

[c1] is trivially true. We have:

M](block) = M'(block) L M'(E) U M'(pc).label and

M, (block") = M (block) LI M(E) U M (pc).label.

¢ L M/ (block) = B

L M(E), £ M'(pc).label, and ¢ L M'(block) = (because M|z = M'|5;)
CILM(E), LIL M(pc).label, and € IZ M (block),

M(E) = M'(E), M(pc) = M'(pc), and M(block) = M'(block).

So £ Z My(block), as wanted. So, My(block’) = M;(block), and thus, { Z
My(block’).

Thus, £ = M](block) = £ T My(block’). [c2]

We have (a := &, M') <X/, so M{' = M', and M{'|5; = M’
Mt‘ﬁ [63]

Case 2. w:=¢&

Y= (w:=&, M) — (stop, M)
Y =(w:=E&, M'Y — (stop, M)
[c2] is trivially true.

We prove consistent(My, M/, {).

e = Ml =

32

We have My(pc) = M(pc), M{(pc) = M'(pc), M(block) = M block),
M (block) = M'(block). Only working variable w changes.

Let w € M;(pc).pop™.top.V and £ T My(pc).pop™.label.

Then £ T My(pc).label. So, £ T M (pc).label. So, £ T M'(pc).label.

Thus, £ © M'(pc).label T M{(w), M{(w).

So, consistent(My, M], (). -

Case 2.1. Let ¢ [Z My(w) U M (block).

Then, L I M(E), £ L M(pc).label, and ¢ £ M (block).

So, L IL M'(E), £ L M'(pc).label, and ¢ £ M'(block).

So, due to healthy(M) and healthy(M'), we have £ L M(E) and £ Z M'(E).
Thus M and M’ agree on block,E,E,E and pc. B B
Thus My and M agree on w and w, and My(w) = M(E) = M'(€) = M{(w).
SO, Mt‘ﬁ = M{‘Tj [Cl], [63]

Also, £ L My(z) U My(block). So, Bl5z = X'l = (w, M(E)). [c0]

Case 2.2. Let ¢ T M;(w) U M (block).
By symmetry of the preceding case, £ T M (w) L M/ (block).
SO, 2‘7\7 = E/|T7 = €. [CO]

Case 2.2.1. Let ¢ [Z My(w) = M(E) U M(pc).label.

Then, £ Z M(E) and € Z M (pc).label.

So, L IZ M'(E) and £ Z M’ (pc).label.

Also, M(E) = M'(€), M(E) = M'(€), and M(pc) = M’(pe).

So, L L M{(w) = My(w) and M{(w) = My(w).

If € C My(w), then £ T M} (w), and thus M|z = M{l55. [el], [e3]

If 0 L My(w) = M(E) U M(pc).label, then £ L M(E) and £ L M (pc).label.
So, L IL M'(E), and thus, M(E) = M'(E), and thus My(w) = M{(w).
Thus, Mylsz = M{l55. [c1], [e3]

Case 2.2.2. Let L C M;(w).
Then ¢ T M{(w), due to M|z = M'|s, and thus £ T M(w), Mi(w), due to
healthy(M) and healthy(M"). Thus, M|z = M{lz;. [c1],[e3]

Case 3. C;;Cy

We first prove the second part of c1; afterwards, we prove c0-c3 by cases.
Assume both 3 and Y terminate.

Consider ¥ = (Cy;Cy, M) = (Cy, My) = (stop, M;) and

Y= (Cr;Cy, M) = €y, Mj) = (stop, Mj).

From hypothesis, consistent(M, M’ ().

From IH on Cy, consistent(My, M],¢). From Lemma 4 and IH on C;,
consistent(My, M/, ().

33

Case 3.1. C; terminates normally in X and ¥’

Let ¥ = (C7:Cyy M) 5 (Cy, M) = (Cpy M) and

X = (CriCy s M) 5 Gy M) > (o M)

Consider

£1=(Cy, M) = (stop, Ma), T = (Cy, Ma) =+ (Cop, M),
Sh— (s M) % (stop, M3, S = (C5', Mj) = (g M)).
From IH on Cy, we get 31|57 = X |57, Malsz = Mslsz, and consistent(Ma, M,).
From IH on Cy and Lemma 4, we get Yol = X |5

SO, E|T7 = E/|T7 [CO]

If ¥ and X' terminate normally, then Yo and X} terminate normally, and

If 3 terminates normally and ¢ = My(block'), then ¥ terminates normally
and £ T My(block’). So, ¢ T Mj(block). [c2]

If ¥ terminates normally and ¢ Z M;(pc).label, then X terminates nor-
mally and ¢ L My(pc).label.

So, by IH, there is some (Cy, My) > (Cop, M"Y < XYy and M,

*

Thus (Cy;Cy, M'Y 5 (Cy, ML) 5 (Copy M"Y < X' and M

57 = M{'|5-
57 = M{'[57- [c3]
Case 3.2. C; blocked in both ¥ and ¥’

Let ¥ = (C;;Cy, M) 5 (Cy3Cy, My) and

¥ = <Cl_762_7 MI) i> <Cl_t/;c2_7 Mt/>

We consider

Sy =(Cy, M) 5 (Cpy, My), B4 = (Cy, M"Y 5 (Cpy, MY).

From IH on C;, X1, XY, we get [c0], [c1], [¢2], [¢3].

Case 3.3. C; is blocked in X, terminates normally in X'
Let ¥ = (C;Cyy, M) 5 (Cyy3Cyy My) and

X = (Cr5Cy s M) = (Cy, My) = (Cyy, M)

[c1] is trivially true.

Consider

Y= <Cl_a M> _*> <Cl_t7 Mt>;

S) = (Cr, M) 5 (stop, M), X = (C;, My) = (Cyy, M]).
Also:

Y terminates normally and ¢ T M;(block’) =

¥ terminates normally and ¢ C M;(block’) = ¢ T M} (block)
= (C M/(block), from Lemma 7. [c2]

Also:

Y/ terminates normally and ¢ Z M(pc).label =

Y terminates normally and ¢ Z My(pc).label =

34

*

there exists (C;', M') — (Cy,, M) <X and M|z = M{' |5
So, there exists (C;;Cy, M"Y = (Cy;;Coy MJ) < X' and M,
(3]

From IH on Cy, we get 3|57 = X |57

To prove |57 = X'|57, it suffices that Ll = €.

So we prove Tyl = €.

Trace 3 is blocked due to (S-ASGN1), so Cy; =a:=¢&;...

Case 3.3.1. Let ¢ C My(pc).label.

Then ¢ C My (block’). From IH[c2] on Ci, 31, ¥}, £ T Mi(block).

So, using Lemma 7, every a := & in Cy is executed in a memory M" only
if £ T Mj(block) T M"(a), and for every w := & in Cy , £ T M (block) T
M" (w) U M"(block).

S0, Xalz; = €. [c0]

Case 3.3.2. Let ¢ IZ My(pc).label.

From IH[c3] on C;, X1, ¥}, there exists (C;, M') = (Cy;, M]) < ¥ and
So, L IZ M (pc).label and My(pc) = M (pc).

Because 31 was blocked, we have M(E) UM, (pc).label J My (block) LM (E) L
My (a). Since the equality is satisfied in X, it means that some of the values
of €, block, & are different in M; and M.

If My(E) # MJ(E), then £ T M} (E). So, £ T M) (block), thus from Lemma
7, £ © MJ(block). B

So, following the arguments of case 3.5.1, Yoz = €. [c0]

The same argument applies if My(E) # M{(E) or My(block) # Mj(block).

Case 4. if € then C; else C; end

Case 4.1. Let L L M(E).

Then £ Z M'(E) and M(E) = M'(E).

So, ¥ and X' get the same branch, say Cy.

¥ = (if £ then C; else C; end, M) — (Ci;end, M) = (C;, M),
¥/ = (if £ then C; else Cy end, M') — (Ci;end, M]) 5 (Cl, M]).

Case 4.1.1. Let ¢ Z M;(pc).label.

Then £ 1L M (pc).label, because M (pc).label T M (pc).label.

So, £ 1L M'(pc).label and M (pc) = M'(pc).

We have ¢ Z M(E) and ¢ L M'(E), because M(E) T M(E) and M'(E) C
MIE).) - -
So, M(E) = M'(E).

Thus, My (pc) = Mj(pc), because also d and V are the same for 3 and 3.

7 = M{ls7-

35

Thus, Milz; = M{ls7 and £ Z M{(pc).label. Because ¢ £ M (pc).label and
¢ IZ M{(pc).label,
we get consistent(My, M,).

Case 4.1.2. Let ¢ T M (pc).label.

Then £ T M{(pc).label, by the symmetry of the above arguments.
Let £ L My(pc).pop.label.

So, L IZ M(pc).label. Thus, £ IZ M'(pc).label and M (pc) = M'(pc).
So, L IZ Mj(pc).pop.label and Mi(pc).pop = M (pc).pop.

Let also £ IZ My(pc).pop™.label with n > 1.

Then £ IZ M(pc).pop™L.label = M;(pc).pop™.label.

So, M'(pc).pop"™~+ = M(pc).pop™*.

Thus, Mj(pc).pop™ = M (pc).pop™.

Th’LLS, M1|T7 == M{‘T?

Now, we prove that consistent(My, M7,) holds.

In the definition of consistent(My, M{,¢), first consider n = 0.
Assume Mj(pc).top.d holds.

Because both traces take branch C1, we have:

M (pc).top.d = M{(pc).top.d = anchorVar(Cz).

So, M (pc).top.d holds, too.

Also, from the hypothesis of this subcase we have ¢ T M;j(pc).label and
¢ C M (pc).label.

Forn > 0, we have:

M, (pc).pop™.top.d A € T My (pc).pop™.label

= M (pc).pop™.top.d A ¢ T M (pc).pop™*.label

= { C M'(block)V

M'(pc).pop™L.top.d A€ E M’ (pc).pop™ *t.label

= { C M/(block)V

M (pc).pop™.top.d A € T M](pc).pop™.label.

We work similarly for the second component (working variables) of the def-
inition of consistent.

So, consistent(My, My, 1).

In both cases, healthy(My) and healthy(M7) hold, because healthy(M),
healthy(M') and no label or metalabel changed along the transition to C1; end.

Consequently, in both cases we can use Lemma 4, apply the IH on C1;end,
and get [c0], [c1], [¢2], [c3].

Case 4.2. Let LT M(E).
Then £ T M'(E).
So, ¥ and X' may get different branches:

36

> = (if £ then C; else Cy end, M) — (Ci;end, M) = (C;, M),

¥ = (if £ then C; else Cy end, M') — (Cy;end, M}) = (Cl, M]).

In both traces, { T My (pc).label, M (pc).label.

From Lemma 9 we get |57 = X'l = €. [c0]

Assume that both traces terminate:

Y = (if € then C; else Cy end, M) — (Ci;end, M;) = (end, My;) —
(stop, M;) ,

¥ = (if £ then C; else C; end, M') — (Co;end, Mj) = (end, M},) —
(stop, M]).

We want to show that M|5z; = M{lz.

Case pc: From Lemma 6, the value of pc is restored at the exit of the con-
ditional, that is, My(pc) = M(pc) and M](pc) = M'(pc).

If ¢ IZ My(pc).label = M (pc).label, then ¢ L M'(pc).label, and M (pc) =
M'(pc), and thus, Mi(pc) = M{(pc).

If £ L My(pc).pop™().label, for n > 1,

then £ IZ M (pc).pop™().label, then £ IZ M'(pc).pop™().label, and M (pc).pop™() =
M'(pe).pop™(),

and then My(pc).pop™() = M{(pc).pop™().

Case block:

o I[fanchorVar(C;) and anchorVar(Cz), then from Lemma 8, £ T M (block)
and ¢ T M3, (block).
From Lemma 7, £ T M, (block), M](block).

e If —anchorVar(C;) and anchorVar(Cs),
then Mii(block) = M (block) and from Lemma 8 ¢ T M, (block).
From Lemma 7, £ T M](block).
Because ¢ T M(E), we have ¢ T Mi(pc).label. From Lemma 6,
¢ C Myy(pc).label.
Due to (S-END), £ T Mi4(pc).label T Mi(block).
So, ¢ T M, (block), M](block).

o If —manchorVar(Cy) and —anchorVar(Csz),
then My (block) = M (block) and M}, (block) = M’'(block).
Due to (S-IF) and (S-END), M, (block) = My;(block) and M](block) =
M, (block).
So, if £ L My(block), then ¢ IZ M/ (block) and My(block) = M/ (block).

Case v,z,x: From Lemma 9, we get that for all x :== &' in C; and Ca, we

have ¢ C My(z), Mt(g), M{(z), Mé(g)

37

Thus, we have My|sz = M|g7 for all cases.

Now, we want to show consistent(My, M|, 7).

From Lemma 6, My(pc) = M(pc) and M{(pc) = M'(pc).

If My(pc).pop™.top.d N0 T M(pc).pop™.label, then M (pc).pop™.top.d AL C

M (pc).pop™.label. So, £ T M'(block) or M'(pc).pop™.top.d A £ & M'(pc).pop™.label.
So, ¢ T M[(block) (from Lemma 7), or M{(pc).pop™.top.d A £ T M](pc).pop™.label.
Ifw € My(pc).pop™.top. VN My(pc).pop™.label, then w € M (pc).pop™.top.V A

¢ C M(pc).pop™.label.

Then ! T M'(w) and £ & M'(w) orw € M'(pc).pop™.top. VAL T M’ (pc).pop™.label.
Ifw € M'(pc).pop™.top. VAL T M'(pc).pop™.label, thenw € M} (pc).pop™.top.V A

¢ C M/ (pc).pop™.label.

If ¢ C M'(w) and £ T M'(w) and if there is no assignment w := &' to such

a w in the if-statement, then { T M](w) = M'(w) and ¢ T M!(w) = M'(w).
Otherwise, from Lemma 9, we get that £ T M} (w), M](w). a

Thus, consistent(My, M}, ¢). [c1] -

We now prove [¢2]. Assume X terminates normally and ¢ C© M;(block’).

This means that X is blocked at an assignment to anchor variable. So,
anchorVar(Cy) holds, and thus, due to (S-END), we get £ T Mj(pc) C

M (block) = M3, (block) U M}, (pc). [c2]

Assume Y terminates normally and Y. does not. Then £ = My (pc).label C

M, (pc).label.

Case 5. while £ do C end
We prove consistent(My, M/, ¢) similarly to case (S-IF).
Induction on the mazimum number of iterations in X and X'.
Base case: both ¥ and X' take (S-WL2).
Let ¢ L My(pc).label.
Then £ L M(pc).label and ¢ L M(E),
because M (pc).label, M (E) T M(pc).label.
So, £ 1L M'(pc).label, ¢ L M'(E), M(pc) = M'(pc) and M(E) = M'(E).
Also, 0 TL M(E) and € L M'(E), because M(E) T M(E) and M'(E) T M'(E).
Thus, M(E) = M'(E). B B
So, My(pc) = M|(pc), because d and V are the same for 3 and 3.
Thus, Milzz = M|z [el], [c3]
Also, El57 = ¥'|57 = €. [c0]
[c2] is trivially true.
Induction case.

Case 5.1. Let { L M(E).
Then ¢ Z M'(E) and M(E) = M'(E). So, both XX and X' take the same

38

branch. If both take (S-WL2), then we follow the Base case. Assume that
both take (S-WL1).

Case 5.1.1. We have:

Y = (while £ do C end, M) —

(C;end; while £ do C end, M;)

(while £ do C end, M) > (C;, M),

¥/ = (while £ do C end, M') —

(C;end; while £ do C end, M!) =5

(while € do C end, M}) = (', M]).

Consider:

Y1 = (C;end, M;) 5 (stop, M>),

Yy = (while € do C end, M) = (C;, M;)

Y| = (C;end, M]) > (stop, M}),

>, = (while £ do C end, M}) = (C, M]).

Because M(E) T M(E) and M'(E) T M'(E), we get L IZ M(E), L Z M'(E),
and thus, M(£) = M'(E). B B B
So, if £ T M;i(pc).label, then ¢ T M (pc).label, and M (pc) = M'(pc) and
My(pe) = M (pe).

Similarly, if ¢ © My (pc).pop™.label, withn > 1, then Mi(pc).pop™ = M (pc).pop™.
Thus M|z = Ml

From Lemma 4 and IH on Ciend, X[= Xil and Ma|g = Mj|.

From IH on the max-number of iterations on Yo and X, Yol = EIQW' So,
Yl = Y5 [c0]

If ¥ and X' terminate normally, then Yo and X} terminate normally, and
Similarly, [c2] and [c3].

Case 5.1.2. We have:

Y = (while £ do C end, M) —

(C;end; while £ do C end, M;) =

(Cy;;end; while £ do C end, M),

¥ = (while £ do C end, M') —

(C;end; while £ do C end, M) =

<C1_t/; end; while € do C end, M]).

We follow the arguments above by using Lemma 4 and IH on C;end.

Case 5.1.3. We have:
Y = (while £ do C end, M) —
(C;end;while € do C end, M)

39

5 (C1;; end; while € do C end, M),

¥/ = (while £ do C end, M’)

— (C; end; while € do C end, M)

2 (while £ do C end, M) 5 (¢!, M]).

Consider:

Y1 = (C;end, My) = (Cy;, M),

Y| = (C;end, M]) > (stop, M}),

5, = (while £ do C end, M3) = (¢, M]).

As proved above, M|z = Mz

From Lemma 4 and IH on C;end, we get leﬁ =% ’W'
[c1] is trivially true.

Assume that X' terminates normally and £ T M;(block’).
Then ¥ terminates normally and £ T My (block’).

Then £ T MJ(block). From Lemma 7, ¢ = M](block). [c2]
Similarly we prove [c3].

For [c0], we want to show that Y| = €. We follow the same arguments as
those in case (S-SEQ).

Case 5.2. Let LT M(E).

So, L C M'(E).

Then X and X' may take different branches.

From Lemma 9, we get Y|z = ¥'|57 = €. [c0]

Assume that X and X' terminate. From Lemma 9, for each x := £ in the
while-statement, £ T My(x), My(z), M{(z), M{(z) holds.

Also, for each r := ref(a) in the while-statement we get £ T M;(r).r and
0T M(r).r.

From Lemma 6, My(pc) = M(pc) and M{(pc) = M'(pc).

Also, if £ I My(block), then there is no assignment to anchor variables in C
and £ IZ M(block) = My(block). So, M (block) = M’ (block).

So, M{(block) = M'(block) = M (block) = M;(block).

ThUS, Mt‘ﬁ = Mt/‘ﬁ [Cl]

If ¥ does not terminate, then anchorVar(C) is true, and thus £ T M{(block).
2l

Also, L T M(E) T My(pc).label. So [c3] is trivially true.

Case 6. end

[c2] is trivially true.

Because X5 = X775 = €, [c0] holds.

We prove consistent(My, M, 0).

Let My(pc).pop™.top.d and £ T My(pc).pop™.label.

40

Then, M (pc).pop™**.top.d and £ C M (pc).pop™+!.label.

So, £ T M'(block), or M'(pc).pop™*'.top.d and £ T M'(pc).pop™t!.label.

Thus, ¢ = M[(block) (from Lemma 7), or M{(pc).pop™.top.d and ¢ = M/(pc).pop™.label.
Let £ © My(pc).pop™.label.

Then ¢ T My (pc).label, and thus £ T M (pc).label.

So £ C M'(pc).label.

For a w € My(pc).pop™.top.V,

we have w € M (pc).pop™HL.top.V.

Also, £ £ M (pc).pop™t.label = My(pc).pop™.label.

So, ¢ T M'(w) and ¢ T M'(w), or w € M'(pc).pop™.top.V and ¢ T
M'(pc).pop™tL.label.

Ifw € M'(pc).pop™+L.top.V and £ = M'(pc).pop™t.label, then w € M](pc).pop™.top.V
and ¢ = M/(pc).pop™.label.

If ¢ C M'(w) and £ € M'(w) and ifw € M'(pc).top.V, then £ T M| (w), M| (w),
otherwise £ T M!(w) = M'(w) and ¢ T M!(w) = M'(w). n

Thus, consistent(My, M},). B B

Case 6.1. Let ¢ T M;(pc).label.

Then ¢ T M (pc).pop.label. So, £ T M'(pc).pop.label, due to Mg = M/|T7'
So, £ T M]/(pc).label.

Also, £ T M(pc).label and ¢ T M'(pc).label.

Let ¢ IZ My(pc).pop™.label.

Then, £ IZ M(pc).pop™+!.label.

From hypothesis, £ [M'(pc).pop™*!.label

and My(pc).pop™ = M (pc).pop™tt = M'(pc).pop™t! = M/ (pc).pop™.

Case 6.1.1. Let M(pc).top.d hold.

So, ¢ T My(block). Because consistent(M, M’ 0), we get £ T M'(block), or
M’ (pc).top.d holds.

If ¢ © M'(block), then from Lemma 7, £ T M/ (block).

If M'(pc).top.d holds, then £ T M{(block).

Case 6.1.2. Let M (pc).top.d be false.

So, M;(block) = M (block).

If ¢ Z My(block), then £ IZ M(block), and thus £ © M'(block) and M (block) =
M’ (block).

Assume for contradiction that ¢ T M/ (block). This means that M/ (block) #
M’ (block), and so M'(pc).top.d holds. From consistent(M, M’ (), we get
¢ C M(block)

or M(pc).top.d is true, which are contradictions. So, £ Z M/ (block), and
M (block) = M'(block) = M (block) = M;(block).

41

Case 6.1.3. Let x € M(pc).top.V and x € M'(pc).top.V .

Case 6.1.4. Let x & M(pc).top.V and x & M'(pc).top.V .
Then the label and metalabel of x do not change in neither traces.

Case 6.1.5. Let x € M(pc).top.V and x & M'(pc).top.V.
From, consistent(M, M', (), we get £ & M'(z), M'(z).
0 C Mi(z), Mi(z), My(z) = M'(z), M'(z) = My(z)-

Thus, My|s; = M{ls. [c1], [¢3]

Case 6.2. Let ¢ [Z M;(pc).label.

Then £ IZ M (pc).pop.label. So, £ [Z M'(pc).pop.label and M (pc).pop.label =
M'(pc).pop.label.

Thus £ IZ M[(pc).label and M;(pc) = M{(pc).

If £ © M (pc).label, then we work as above.

Let ¢ IZ M (pc).label.

Then £ IZ M'(pc).label and M (pc) = M'(pc).

So, M(pc).top.d = M'(pc).top.d and M (pc).top.V = M'(pc).top.V.

For an x € V, if £ L My(x), then £ Z M(z), because My(z) = M(z) U
M (pc).label, and thus € Z M'(z). So, £ £ M(z) and ¢ Z M'(z), and thus,
M(z) = M'(z) and M(z) = M'(z). Because M (pc).label = M’ (pc).label,
we get My(z) = M{(z) and M;(z) = M{(z).

Case 6.2.1. Let ¢ [Z My(block).

Then ¢ L M (block) (independently to M (pc).top,d).

So, £ IZ M'(block) and M (block) = M'(block).

Because M (pc) = M'(pc) and M (pc).top.d = M’ (pc).top.d, we have My(block) =
M (block) and ¢ L M/(block).

Case 6.2.2. If { T M(block), then ¢ T M](block).

Thus, Mlzz = Myl [c1], [e3].
O
Lemma 4. (Cy, My) = (C~, M) A healthy(My) = healthy(M).
Proof. By induction on the OS rules.
We use Lemma 5 to prove the case of (S-ASGN2). O
Lemma 5. Vo.M (z) E M(z) = M(£) E M(E).
Proof. By induction on the structure of &. O

42

Lemma 6. If (C, M) = (stop, M), then M(pc) = My(pc).

Proof. By induction on the OS rules. O
Lemma 7. If (C, M) =5 (C—, M'), then M(block) T M'(block).

Proof. By induction on the OS rules. O

Lemma 8. If (C~, M) = (stop, M;) and ¢ = M(pc).label and anchorVar(C™),
then £ = My(block). Additionally, if C~ is a conditional command with guard
E, and L T M(E) and anchorVar(C™), then £ C M;(block).

Proof. Induction on the OS rules.

Case 1. (S-AsaN1)
¢ C M(block) U M(E) U M(pc).label = My(block).

Case 2. (S-AsGN2)
Trivially true.

Case 3. (S-AsGN3)
Trivially true.

Case 4. (S-AsaN4)
¢ & M (block) L M(E) L M(pc).label U M (r).r = My(block).

Case 5. (S-SEQ)

We have (C1;Co, M) 5 (Co, My) = (stop, M;).

From IH on Cy and if anchorVar(Cy), we get £ T M (block). From Lemma
7, £ T My(block).

If anchorVar(Cz), from Lemma 6 that gives Mi(pc) = M(pc), and from
Lemma 4 and IH on Co, we get £ = My(block).

Case 6. (S-Ir)

We have:

(if £ then C; else C; end, M) — (C;;end, M;) = (end, M) —
(stop, M;).

We have £ © M (pc).label.
From IH on Cy, if anchorVar
From Lemma 7, £ © My(block
If anchorVar(Cs), then Mi(pc).top.d = true.

From Lemma 6, M.(pc) = Mi(pc), and thus M.(pc).top.d = true.

So, £ T Me(block) LI M (pc).label = M. (block) L M (pc).label = M;(block).

—

C1), then we get £ T M, (block).

P

43

Case 7. (S-WL1)

From Lemma 4 and IH on C and Lemma 7.

Case 8. (S-WL2)

We have (while £ do C end, M) — (end, M.) — (stop, M;).

If anchorVar(C), then £ T M(pc).label T Me(pc).label T M, (block) L
M. (pc).label = My(block).

Case 9. (S-EnND)
Trivially true.

Now we concentrate on while-statements and if-statements. Consider
(if € then C; else C2 end, M) —
(C1;end, M;) > (end, M.) — (stop, M;).
We have ¢ T M(E) C M (pc).label.
So, we apply the above result to (C1;end, M;) and get ¢ T M;(block).
Consider (while £ do C end, M) —
(C;end; while £ do C end, M;) >
(while £ do C end, M,) = (stop, M;).
We have ¢ T M(E) C M (pc).label.
So, we apply the above result to
(C;end;while £ do C end, M;) and get ¢ T M;(block).

O

Lemma 9. If % = (C;, M) > (C;» My) and C; is a conditional command
with guard £, and £ T M(E), then

- 2’1\7 =€,
— if ¥ terminates and w := &' € C; then { T My(w), My(w), and
— if ¥ terminates and r := ref(a) € C; then £ T My(r).r.

Proof. First we prove:
if $=(C;7, M) = (C;, My) and £ T M(pc).label, and £ E M (E), then

- 2’1\7 = €,
— if ¥ terminates and w := &' € C; then ¢ C M;(w), M;(w), and
— if ¥ terminates and r := ref(a) € C;” then £ T My(r).r.

We use induction on C.

44

Case 1. (S-AsaN1)
The assignment is executed only if £ © M(pc).label & M(a). So, X5 = €.

Case 2. (S-AsGN2)
¢ T M(pc).label & My(w), My(w). So, Xl = .

Case 3. (S-AsaN3)
€ & M(pc).label & My(r).r. So, Xl =e.

Case 4. (S-AsaN4)
¢ & M(pc).label © My(r).t. So, £ T M(M(r)), and thus X5 = .

Case 5. (S-SEQ)

If ¥ is blocked in C , then we apply IH on C{ and get E|T7 =e.

If ¥ executes Cy , from IH on Cy , we get w := &' € C; = L T M;(w), M;(w)
and X157 = €. a
From Lemma 6, M(pc) = M (pc).

If ¥ is blocked in Cy , we can use Lemma 4 and apply IH on C, and get
E‘Tj = €.

If Cy terminates, then w := & € Cy = £ T My(w), My(w).

So, if w:=E& € Cy;Cy, then

w:=E&€Cy =L LT M(w), Mi(w)

w:=E¢Cy Nw:=E"€C = LT M(w) = Mi(w) N E My(w) = My(w).

Case 6. (S-IF)

We have:

¥ < (if £ then C; else Cy end, M) — (Ci;end, M;) = (end, M.) —
(stop, My).

We have ¢ T M (pc).label T M, (pc).label.

From IH on Cy, Xl =€, and w:= &' € Cy = L T Me(w), Mc(w).

But, w:=&" € Ca = ¢ T M (pc).label = M. (pc).label T M(w), My(w).
Also w:=&" € Cy = M.(w) C My(w) and M (w) E Mi(w). o

Case 7. (S-WL)
Similarly to above.

Case 8. (S-END)
Trivially true.

From the statement proved and from ¢ C M (£), we get what we want.
O

45

We prove that when substituting (S-AsGN1) and (S-AsGN2) with (S’-

AscNl) and (S’-AsGN2), correspondingly, the resulting operational seman-
tics satisfy Theorem 1 for H and L labels.
First, we prove that Theorem 1 holds for H and L labels when we use rule
(S’-AscN1) instead of (S-AsGN1). Then, given that the new operational
semantics, where (S-ASGN1) is substituted by (S’-ASGN1) does not use
metalabels, but they only update metalabels, we deduce that if metalabels
are removed from the operational semantics, Theorem 1 still holds for H and
L labels. In particular, (S-ASGN2) can be substituted by (S’-AsGN2) and
the Theorem will still hold.

Proposition 10. Assuming rule (S-ASGN1) is substituted by rule (S’-ASGN1),
and considering a two level lattice ({H,L}, C), with L = L and L C H, then
Theorem 1 holds for ¢ = H.

Proof. We follow the strategy used to prove Case 1 in the proof of Theorem
1. Instead of writing ¢ Z ¢ for a label ¢/, we may write ¢/ = L, because
¢ =1L. And, instead of writing ¢ C ¢, we may write ¢’ = H.

We first prove the second part of cl; afterwards, we prove c0-c3 by cases.
If both 3 and ¥/ terminate, My(pc) = M (pc), M](pc) = M'(pc), My(block) =
M (block), M/ (block) = M'(block), Yw.My(w) = M(w), Yw.M{(w) = M'(w),
Vw.My(w) = M (w), and Yw.M](w) = M'(w).
Because consistent(M, M’, (), from the above we also get consistent(M;, M/, 0).
We also have M (a) = M'(a): by definition, ¢ IZ M(a) = M'(a) = L, which
implies a € dom(M|57), and because M|z = M'[z, we have M(a) = M'(a).

Case 1. Let M(a) = M'(a) = L. We first prove that the command is ex-
ecuted normally in both memories or blocked in both memories. W.l.o.g.,
assume that the command is executed normally in M. That is, M(E) U
M (pc).labelUM (block”) © M (a), where M (block’) = M (block)M (pc).label.
This implies that all members of the supremum are L, that is, M(E) =
M (pc).label = M (block’) = L; thus, M (block) = L. Hence the labels in-
volved in these expressions are in M|T7'

Then, because Mz = M'lz, they are also in M'|5; and the two memo-
ries agree on them, that is, M(E) = M'(E), M(pc) = M'(pc), M (block) =
M’ (block) =L, and M(E) = M'(E) = L.

M (a) = M'(a) by the argument above. Thus, M'(E)UM’(pc).labelIM’ (block’) C
M'(a), as wanted.

Case 1.1. The command is executed normally in both memories. Then
Y= {(a:=&, M) — (stop, M[a+> M(E), block — M (block’)]), and
Y ={(a:=E& M) — (stop, M'[a— M'(E), block — M’ (block’)]).

46

We have Y|z = ¥
holds.

Also, we have Mi(a) = M/(a) and M(block) = M](block). Hence [c1],[c3].
Finally, [c2] is trivially true.

Case 1.2. Both traces are blocked. Then Xl = ¥'|57 = €, blocked. [c0].
Finally, [c1],[c2], [e3] are trivially true.

Case 2. Let M(a) = M'(a) =H.

Then Mi(a) U My(block) = H, and hence, by Lemma 2, we have X|5 =
Y5z = €. [c0]

Because M(a) = M(a) = H, we have a ¢ M|, and hence, we only have to
check variable block to prove [cl].

Case 2.1. Let L = My(block) = M (block) LI M(E) U M(pc).label and both
3, Y terminate. B

Then, M (block) =L and M (pc).label = L.

Because M|z = M|z, M'(block) = M'(pc).label = L holds.
Also, M(pc) = M'(pc).

So, M/ (block) = M(block) = L.

Thus, Milzz = M{l55. [el], [c3]

[c2] is trivially true.

Case 2.2. Let My(block) =H and both X, ¥ terminate.

By symmetry of the preceding case, M{(block) = H.

So, My|sz = M{lz, since block is not in their domain. [c1],[c3]
[c2] is trivially true.

57 = (a, M(E)) because M(E) = M'(E). Thus, [cO]

Case 2.3. Let Y terminate and ¥ do not.

cl] is trivially true. We have:

M/ (block) = block’ = M'(block) U M'(pc).label and

M;y(block”) = M (block) U M (pc).label.

M (block) =L =

M'(pc).label = M'(block) = L = (because M|z = M'|5;)

M ((pc).label = M (block) =L, and

M (pc) = M'(pc), and M (block) = M'(block) = M;(block).

So My(block) =L, as wanted. Thus, M](block) = H = M;(block’) = H. [¢2]
We have (a ==&, M') < X', so M{' = M', and M{'|5; = M'lzz = M| =
Mt|T7 [63]

—

We also need to change parts of the proof of Theorem 1 that use (S-
ASGN1). Also, parts of the proofs of Lemmata that use (S-ASGN1).
In Theorem 1, these parts are found in (S-SEQ) and (S-WL), concerning

47

the proof of X[= .

Case 3.3.2 (M(pc).label = L) becomes as follows. From IH[c3] on C;, ¥,
¥, there exists (C;, M') = (Cy;, M}) < X} and M| = M]
So, ¢ Z M{(pc).label and M(pc) = Mj(pc).

Because ¥; was blocked and X} was not, the values of £, and block may
be different at these traces. Because Mtlﬁ = Ml't|T7’ and because £ and
block can either be H or L, we have that M(€) = M{(E) and M (block) =
Mj(block"). So, it cannot be the case that ¥; is blocked and ¥} is not
blocked. So, it cannot be the case that M;(pc).label = L. Thus, Case 3.3.2
cannot happen when labels H and L are used. We follow the same arguments
for Case 5.1.3. O

|5e I52-

48

