104 research outputs found
Phylogeny and taxonomy of the round-eared sengis or elephant-shrews, genus Macroscelides (Mammalia, Afrotheria, Macroscelidea)
CITATION: Dumbacher, J. P., Rathbun, G. B., Smit, H. A. & Eiseb, S. J. 2012. Phylogeny and taxonomy of the round-eared sengis or elephant-shrews, genus Macroscelides (Mammalia, Afrotheria, Macroscelidea). PLoS ONE, 7(3):e32410, doi:10.1371/journal.pone.0032410.The original publication is available at http://journals.plos.org/plosoneThe round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species. © 2012 Dumbacher et al.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032410Publisher's versio
Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes
We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates
Phylogeny and Taxonomy of the Round-Eared Sengis or Elephant-Shrews, Genus Macroscelides (Mammalia, Afrotheria, Macroscelidea)
The round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species
A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5–11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history
Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls
A taxonomic revision of the genus Pitohui Lesson, 1831 (Oriolidae), with historical notes on names
Volume: 134Start Page: 19End Page: 2
Home range and use of diurnal shelters by the Etendeka round-eared sengi, a newly discovered Namibian endemic desert mammal
To understand habitat use by the newly described Etendeka round-eared sengi (Macroscelides micus) in northwestern Namibia, we radio-tracked five individuals for nearly a month. Home ranges (100% convex polygons) in the rocky desert habitat were remarkably large (mean 14.9 ha) when compared to sengi species in more mesic habitats (<1.5 ha). The activity pattern of M. micus was strictly nocturnal, which contrasts to the normal diurnal or crepuscular activity of other sengis. The day shelters of M. micus were under single rocks and they likely were occupied by single sengis. One tagged sengi used 22 different day shelters during the study. On average, only 7% of the day shelters were used more than once by the five tagged sengis. The shelters were also unusual for a small mammal in that they were unmodified in terms of excavation or nesting material. Shelter entrances were significantly oriented to face south by south west (average 193°), away from the angle of the prevailing midday sun. This suggests that solar radiation is probably an important aspect of M. micus thermal ecology, similar to other sengis. Compared to published data on other sengis, M. micus generally conforms to the unique sengi adaptive syndrome, but with modifications related to its hyper-arid habitat
- …