17 research outputs found
Towards Retrieving Reliable Ocean Surface Currents in the Coastal Zone From the Sentinel-1 Doppler Shift Observations
Recent developments on calibration and partitioning of the signal between the wave and current contributions significantly improve the accuracy of geophysical retrievals from Sentinel-1 Synthetic Aperture Radar-based Doppler shift measurements in the open ocean. In this study, we revise the Sentinel-1B Interferometric Wide products acquired from December 2017 to January 2018 along the coastal zone of northern Norway. We find that the satellite attitude is responsible for 30% of the variation in the Doppler shift observations, while the antenna pattern can describe an additional 15%. The residual variation after recalibration is about 3.8 Hz, corresponding to 0.21–0.15 m/s radial velocity (RVL) depending on the incidence angle. Using recalibrated Sentinel-1 observations, collocated with near-surface wind from MetCoOp-Ensemble Prediction System and sea state from MyWaveWAM, we develop an empirical function (CDOP3SiX) for estimating the sea-state-induced Doppler shift. CDOP3SiX improves the accuracy of sea state contribution estimates under mixed wind fetch conditions and demonstrates that the Norwegian Coastal Current can be detected in the Sentinel-1 derived ocean surface current RVL maps. Moreover, two anticyclonic mesoscale eddies with radial velocities of about 0.5 m/s are detected. The surface current patterns are consistent with the collocated sea surface temperature observations. The Doppler shift observations from Sentinel-1 can therefore be used to study ocean surface currents in the coastal zone with a 1.5 km spatial resolution. Key Points The Sentinel-1 Doppler shift observations are used to retrieve information about the ocean surface currents in the coastal zone Mesoscale eddies are detected in the Synthetic Aperture Radar-derived ocean surface current radial velocity fields Combination of the wind and wave information from collocated models improves the accuracy of the wave-induced contribution estimates Plain Language Summary Knowledge of ocean surface currents is crucial for studies of volume, heat and salt transport, tracking pollutants, and fisheries. The Doppler shift from Sentinel-1 Synthetic Aperture Radar (SAR) observations can be used to retrieve information about ocean surface currents. Challenging calibration and lack of algorithms for separating the wave and current contributions have limited the application of this observation-based method. Recent developments on calibration showed promising improvements in the accuracy of the signal. In this study, we apply this recent calibration method to Sentinel-1B scenes and develop an algorithm applicable for the challenging conditions in the coastal zone. We found that the signal from the Norwegian Coastal Current can be detected in the Sentinel-1 derived ocean surface current radial velocity fields. Also, we demonstrated the potential of SAR data for observing eddies with diameter of about 40–70 km. The Sentinel-1 derived surface currents express meandering structures and boundaries in consistence with the satellite-based sea surface temperature field. Comparison with the ocean model also reveals reasonable agreement, especially for the major surface current features. Therefore, given accurate calibration and new algorithm for removal of the wind and wave contribution, the Sentinel-1 observations can be used for monitoring ocean surface currents in the coastal zone with high spatial resolution.publishedVersio
Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass
Acoustic measurements show that the biomass of zooplankton and mesopelagic fish is redistributed by mesoscale variability and that the signal extends over several hundred meters depth. The mechanisms governing this distribution are not well understood, but influences from both physical (i.e. redistribution) and biological processes (i.e. nutrient transport, primary production, active swimming, etc.) are likely. This study examines how hydrodynamic conditions and basic vertical swimming behavior act to distribute biomass in an anticyclonic eddy. Using an eddy-resolving 2.3 km-resolution physical ocean model as forcing for a particle-tracking module, particles representing passively floating organisms and organisms with vertical swimming behavior are released within an eddy and monitored for 20 to 30 days. The role of hydrodynamic conditions on the distribution of biomass is discussed in relation to the acoustic measurements. Particles released close to the surface tend, in agreement with the observations, to accumulate around the edge of the eddy, whereas particles released at depth gradually become distributed along the isopycnals. After a month they are displaced several hundreds meters in the vertical with the deepest particles found close to the eddy center and the shallowest close to the edge. There is no evidence of aggregation of particles along the eddy rim in the last simulation. The model results points towards a physical mechanism for aggregation at the surface, however biological processes cannot be ruled out using the current modeling tool.publishedVersio
Ocean Mesoscale Variability: A Case Study on the Mediterranean Sea From a Re-Analysis Perspective
The mesoscale variability in the Mediterranean Sea is investigated through eddy detection techniques. The analysis is performed over 24 years (1993–2016) considering the three-dimensional (3D) fields from an ocean re-analysis of the Mediterranean Sea (MED-REA). The objective is to achieve a fit-for-purpose assessment of the 3D mesoscale eddy field. In particular, we focus on the contribution of eddy-driven anomalies to ocean dynamics and thermodynamics. The accuracy of the method used to disclose the 3D eddy contributions is assessed against pointwise in-situ measurements and observation-based data sets. Eddy lifetimes ≥ 2 weeks are representative of the 3D mesoscale field in the basin, showing a high probability (> 60%) of occurrence in the areas of the main quasi-stationary mesoscale features. The results show a dependence of the eddy size and thickness on polarity and lifetime: anticyclonic eddies (ACE) are significantly deeper than cyclonic eddies (CE), and their size tends to increase in long-lived structures which also show a seasonal variability. Mesoscale eddies result to be a significant contribution to the ocean dynamics in the Mediterranean Sea, as they account for a large portion of the sea-surface height variability at temporal scales longer than 1 month and for the kinetic energy (50–60%) both at the surface and at depth. Looking at the contributions to ocean thermodynamics, the results exhibit the existence of typical warm (cold) cores associated with ACEs (CEs) with exceptions in the Levantine basin (e.g., Shikmona gyre) where a structure close to a mode-water ACE eddy persists with a positive salinity anomaly. In this area, eddy-induced temperature anomalies can be affected by a strong summer stratification in the surface water, displaying an opposite sign of the anomaly whether looking at the surface or at depth. The results show also that temperature anomalies driven by long-lived eddies (≥ 4 weeks) can affect up to 15–25% of the monthly variability of the upper ocean heat content in the Mediterranean basin.publishedVersio
The One Ocean Expedition: Science and Sailing for the Ocean We Want
The One Ocean Expedition (OOE) was a 20-month long circumnavigation of the globe by the Norwegian sail training vessel Statsraad Lehmkuhl, and a recognised part of the UN decade of Ocean Science for Sustainable Development. The ship was equipped with modern instrumentation to collect high-quality data on ocean physics, chemistry, and biology. Many of the data series were available in near real time from an open repository. The scientific programme was executed along the sailing route of Statsraad Lehmkuhl, with occasional stops for stationary work. The aim of the data collection on board the vessel was to improve knowledge about the state of the world's ocean with regards to the distribution and diversity of organisms, environmental status, climate, and human pressures on the marine ecosystem. Another aim of the expedition was to educate ocean scientists and strengthen ocean literacy. The main types of instrumentation are sensors that measure continuously underway including echosounder, hydrophone, temperature and salinity probes, and various instruments that collect and analyse water sampled from an inlet in the ship's hull, including for environmental DNA and microplastic. Here, we describe the scientific instrumentation onboard Statsraad Lehmkuhl and present preliminary results from the Atlantic part of the expedition. While there are many challenges to using a sail ship for scientific purposes, there are also some key benefits as the vessel is quiet and has a low footprint. Furthermore, the use of a common set of instruments and procedures across the ocean also removes an uncertainty factor when comparing data between ocean areas.The One Ocean Expedition: Science and Sailing for the Ocean We WantpublishedVersio
The One Ocean Expedition: Science and Sailing for the Ocean We Want
Source at https://www.hi.no/hi.The One Ocean Expedition (OOE) was a 20-month long circumnavigation of the globe by the Norwegian sail training vessel Statsraad Lehmkuhl, and a recognised part of the UN decade of Ocean Science for Sustainable Development. The ship was equipped with modern instrumentation to collect high-quality data on ocean physics, chemistry, and biology. Many of the data series were available in near real time from an open repository. The scientific programme was executed along the sailing route of Statsraad Lehmkuhl, with occasional stops for stationary work. The aim of the data collection on board the vessel was to improve knowledge about the state of the world's ocean with regards to the distribution and diversity of organisms, environmental status, climate, and human pressures on the marine ecosystem. Another aim of the expedition was to educate ocean scientists and strengthen ocean literacy. The main types of instrumentation are sensors that measure continuously underway including echosounder, hydrophone, temperature and salinity probes, and various instruments that collect and analyse water sampled from an inlet in the ship's hull, including for environmental DNA and microplastic. Here, we describe the scientific instrumentation onboard Statsraad Lehmkuhl and present preliminary results from the Atlantic part of the expedition. While there are many challenges to using a sail ship for scientific purposes, there are also some key benefits as the vessel is quiet and has a low footprint. Furthermore, the use of a common set of instruments and procedures across the ocean also removes an uncertainty factor when comparing data between ocean areas
Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass
Acoustic measurements show that the biomass of zooplankton and mesopelagic fish is redistributed by mesoscale variability and that the signal extends over several hundred meters depth. The mechanisms governing this distribution are not well understood, but influences from both physical (i.e. redistribution) and biological processes (i.e. nutrient transport, primary production, active swimming, etc.) are likely. This study examines how hydrodynamic conditions and basic vertical swimming behavior act to distribute biomass in an anticyclonic eddy. Using an eddy-resolving 2.3 km-resolution physical ocean model as forcing for a particle-tracking module, particles representing passively floating organisms and organisms with vertical swimming behavior are released within an eddy and monitored for 20 to 30 days. The role of hydrodynamic conditions on the distribution of biomass is discussed in relation to the acoustic measurements. Particles released close to the surface tend, in agreement with the observations, to accumulate around the edge of the eddy, whereas particles released at depth gradually become distributed along the isopycnals. After a month they are displaced several hundreds meters in the vertical with the deepest particles found close to the eddy center and the shallowest close to the edge. There is no evidence of aggregation of particles along the eddy rim in the last simulation. The model results points towards a physical mechanism for aggregation at the surface, however biological processes cannot be ruled out using the current modeling tool
Ocean Mesoscale Variability: A Case Study on the Mediterranean Sea From a Re-Analysis Perspective
The mesoscale variability in the Mediterranean Sea is investigated through eddy detection techniques. The analysis is performed over 24 years (1993–2016) considering the three-dimensional (3D) fields from an ocean re-analysis of the Mediterranean Sea (MED-REA). The objective is to achieve a fit-for-purpose assessment of the 3D mesoscale eddy field. In particular, we focus on the contribution of eddy-driven anomalies to ocean dynamics and thermodynamics. The accuracy of the method used to disclose the 3D eddy contributions is assessed against pointwise in-situ measurements and observation-based data sets. Eddy lifetimes ≥ 2 weeks are representative of the 3D mesoscale field in the basin, showing a high probability (> 60%) of occurrence in the areas of the main quasi-stationary mesoscale features. The results show a dependence of the eddy size and thickness on polarity and lifetime: anticyclonic eddies (ACE) are significantly deeper than cyclonic eddies (CE), and their size tends to increase in long-lived structures which also show a seasonal variability. Mesoscale eddies result to be a significant contribution to the ocean dynamics in the Mediterranean Sea, as they account for a large portion of the sea-surface height variability at temporal scales longer than 1 month and for the kinetic energy (50–60%) both at the surface and at depth. Looking at the contributions to ocean thermodynamics, the results exhibit the existence of typical warm (cold) cores associated with ACEs (CEs) with exceptions in the Levantine basin (e.g., Shikmona gyre) where a structure close to a mode-water ACE eddy persists with a positive salinity anomaly. In this area, eddy-induced temperature anomalies can be affected by a strong summer stratification in the surface water, displaying an opposite sign of the anomaly whether looking at the surface or at depth. The results show also that temperature anomalies driven by long-lived eddies (≥ 4 weeks) can affect up to 15–25% of the monthly variability of the upper ocean heat content in the Mediterranean basin
Mesoscale ocean eddy dataset in the Lofoten Basin from Satellite Altimetry
The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin
A Neural Network Method for Retrieving Sea Surface Wind Speed for C-Band SAR
Based on the Ocean Projection and Extension neural Network (OPEN) method, a novel approach is proposed to retrieve sea surface wind speed for C-band synthetic aperture radar (SAR). In order to prove the methodology with a robust dataset, five-year normalized radar cross section (NRCS) measurements from the advanced scatterometer (ASCAT), a well-known side-looking radar sensor, are used to train the model. In situ wind data from direct buoy observations, instead of reanalysis wind data or model results, are used as the ground truth in the OPEN model. The model is applied to retrieve sea surface winds from two independent data sets, ASCAT and Sentinel-1 SAR data, and has been well-validated using buoy measurements from the National Oceanic and Atmospheric Administration (NOAA) and China Meteorological Administration (CMA), and the ASCAT coastal wind product. The comparison between the OPEN model and four C-band model (CMOD) versions (CMOD4, CMOD-IFR2, CMOD5.N, and CMOD7) further indicates the good performance of the proposed model for C-band SAR sensors. It is anticipated that the use of high-resolution SAR data together with the new wind speed retrieval method can provide continuous and accurate ocean wind products in the future.publishedVersio