100 research outputs found

    Speciation Analysis of Mercury in Seawater from the Lagoon of Venice by on-line Pre-concentration HPLC-ICP-MS

    Get PDF
    A method based on the coupling of HPLC with ICP-MS with an on-line pre-concentration micro-column has been developed for the analysis of inorganic and methyl mercury in the dissolved phase of natural waters. This method allows the rapid pre-concentration and matrix removal of interferences in complex matrices such as seawater with minimal sampling handling. Detection limits of 0.07 ng L−1 for inorganic mercury and 0.02 ng L−1 for methyl mercury have been achieved allowing the determination of inorganic mercury and methyl mercury in filtered seawater fromtheVenice lagoon. Good accuracy and reproducibility was demonstrated by the repeat analysis of the certified reference material BCR-579 coastal seawater. The developed HPLC separation was shown to be also suitable for the determination of methyl mercury in extracts of the particulate phase

    Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial: study protocol for a multicentre international trial of cardiac output-guided fluid therapy with low-dose inotrope infusion compared with usual care in patients undergoing major elective gastrointestinal surgery.

    Get PDF
    INTRODUCTION: Postoperative morbidity and mortality in older patients with comorbidities undergoing gastrointestinal surgery are a major burden on healthcare systems. Infections after surgery are common in such patients, prolonging hospitalisation and reducing postoperative short-term and long-term survival. Optimal management of perioperative intravenous fluids and inotropic drugs may reduce infection rates and improve outcomes from surgery. Previous small trials of cardiac-output-guided haemodynamic therapy algorithms suggested a modest reduction in postoperative morbidity. A large definitive trial is needed to confirm or refute this and inform widespread clinical practice. METHODS: The Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial is a multicentre, international, parallel group, open, randomised controlled trial. 2502 high-risk patients undergoing major elective gastrointestinal surgery will be randomly allocated in a 1:1 ratio using minimisation to minimally invasive cardiac output monitoring to guide protocolised administration of intravenous fluid combined with low-dose inotrope infusion, or usual care. The trial intervention will be carried out during and for 4 hours after surgery. The primary outcome is postoperative infection of Clavien-Dindo grade II or higher within 30 days of randomisation. Participants and those delivering the intervention will not be blinded to treatment allocation; however, outcome assessors will be blinded when feasible. Participant recruitment started in January 2017 and is scheduled to last 3 years, within 50 hospitals worldwide. ETHICS/DISSEMINATION: The OPTIMISE II trial has been approved by the UK National Research Ethics Service and has been approved by responsible ethics committees in all participating countries. The findings will be disseminated through publication in a widely accessible peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: ISRCTN39653756.The OPTIMISE II trial is supported by Edwards Lifesciences (Irvine, CA) and the UK National Institute for Health Research through RMP’s NIHR Professorship

    Trends in Environmental Analysis

    Full text link

    Elemental speciation analysis, from environmental to biochemical challenge

    No full text
    Information regarding the distribution of metallic/metalloid chemical species in biological compartments is required for understanding their biochemical impact on living organisms. To obtain such information implies the use of a dedicated measurement approach, namely speciation analysis. The current trend in (elemental) speciation analysis regards bioinorganic applications. New analytical methodologies are therefore necessary for identification, detection and characterization of metal(loids) complexed or incorporated into biomolecules. The established element-speciation approaches developed for the determination of low molecular mass metal(loid) species (e.g. organometallic compounds) in environmental, food, toxicological and health sciences are presently being adapted for the determination of high molecular mass metal-species, generally related to biological processes. This is one of the newest approaches in terms of element speciation and is called metallomics; this concept refers to the totality of metal species in a cell and covers the inorganic element content and the ensemble of its complexes with biomolecules, particularly proteins, participating in the organisms' response to beneficial or harmful conditions. Compared to conventional elemental speciation analysis, the approach applied to bioinorganic analysis is challenging, particularly given the difficulties in identification/characterization of the organic (e.g. protein) content of such species. In addition, quantification is not feasible with the conventional approaches, which led to the exploitation of the unique feature of (post-column) online isotope dilution-mass spectrometry for species quantification in metallomics

    Elemental speciation analysis, from environmental to biochemical challenge

    No full text

    Elemental speciation analysis, from environmental to biochemical challenge

    No full text
    Information regarding the distribution of metallic/metalloid chemical species in biological compartments is required for understanding their biochemical impact on living organisms. To obtain such information implies the use of a dedicated measurement approach, namely speciation analysis. The current trend in (elemental) speciation analysis regards bioinorganic applications. New analytical methodologies are therefore necessary for identification, detection and characterization of metal(loids) complexed or incorporated into biomolecules. The established element-speciation approaches developed for the determination of low molecular mass metal(loid) species (e.g. organometallic compounds) in environmental, food, toxicological and health sciences are presently being adapted for the determination of high molecular mass metal-species, generally related to biological processes. This is one of the newest approaches in terms of element speciation and is called metallomics; this concept refers to the totality of metal species in a cell and covers the inorganic element content and the ensemble of its complexes with biomolecules, particularly proteins, participating in the organisms' response to beneficial or harmful conditions. Compared to conventional elemental speciation analysis, the approach applied to bioinorganic analysis is challenging, particularly given the difficulties in identification/characterization of the organic (e.g. protein) content of such species. In addition, quantification is not feasible with the conventional approaches, which led to the exploitation of the unique feature of (post-column) online isotope dilution-mass spectrometry for species quantification in metallomics
    corecore