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G. Capodaglioa,b, C.F. Ferrari c, Aurélien Dommerguec, P. Cescona,b, C. Barbantea,b,∗

a Institute for the Dynamics of Environmental Processes-CNR, Calle Larga Santa Marta 2137, 30123 Venice, Italy
b Department of Environmental Sciences, University Ca’ Foscari, Calle Larga Santa Marta 2137, 30123 Venezia, Italy
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a b s t r a c t

A method based on the coupling of HPLC with ICP-MS with an on-line pre-concentration

micro-column has been developed for the analysis of inorganic and methyl mercury in

the dissolved phase of natural waters. This method allows the rapid pre-concentration

and matrix removal of interferences in complex matrices such as seawater with minimal

sampling handling. Detection limits of 0.07 ng L−1 for inorganic mercury and 0.02 ng L−1 for

methyl mercury have been achieved allowing the determination of inorganic mercury and

methyl mercury in filtered seawater from the Venice lagoon. Good accuracy and reproducibil-

ity was demonstrated by the repeat analysis of the certified reference material BCR-579

coastal seawater. The developed HPLC separation was shown to be also suitable for the

determination of methyl mercury in extracts of the particulate phase.
Analysis
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tions [6], because of this another method for comparison is
spectrometry

1. Introduction

The most common methods currently in use for the specia-
tion analysis of mercury species are chromatography typically
Gas Chromatography (GC) or High Performance Liquid Chro-
matography (HPLC) coupled to an elemental specific detector
such as inductively coupled plasma-mass spectrometry (ICP-
MS) [1]. GC coupled with ICP-MS currently has some of the
lowest reported detection limits [2] for mercury species with

detection limits of 0.027 pg g−1 for methyl mercury (CH3Hg)
and 0.27 pg g−1 for inorganic mercury (Hg2+) with solid phase
microextraction (SPME) pre-concentration. Other detection
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E-mail address: barbante@unive.it (C. Barbante).
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methods such as atomic fluorescence spectroscopy with solid
phase extraction [3] can reach detection limits as low as
0.01 ng L−1 for CH3Hg and is suitable for the analysis of mer-
cury species in ocean water [4]. However, the drawback of GC is
that the species have to be rendered volatile and this requires a
derivatisation step first with either Grignard reagents or more
recently tetraalkyborate compounds [5] which can be time
consuming and can sometimes result in species transforma-
iversity Ca’ Foscari, Calle Larga Santa Marta 2137, 30123 Venezia,

desirable.
HPLC on the other hand requires no derivatisation step,

as the species do not need to be volatile before injection
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Table 1 – HPLC–ICP-MS operating conditions

Agilent 7500 is ICP-QMS
Forward power 1450 W
Plasma gas flow 15 L min−1

Auxiliary gas flow 1 L min−1

Carrier gas flow 1.09 L min−1

Sample depth 5 mm
Monitoring masses m/z 184, 202 (1 point per

peak)
Acquisition mode Time resolved analysis
Integration time per mass 0.5 s
Spray chamber temperature 2 ◦C

Agilent 1100 series HPLC
Column 100 × 2.1 mm Alltima HP

C-18 3 �m particle size
a n a l y t i c a c h i m i c a a

7], simplifying the sample preparation considerably. How-
ver, to reach the detection limits required for environmental
nalysis, a pre-concentration step is necessary, the vari-
us pre-concentration methods used have been reviewed [8]
nd include on-line [7], and off-line [9] pre-concentration
n various materials including C-18 micro-columns [10,11]
nd sulfhydryl cotton [12]. However, to successfully sep-
rate mercury species by HPLC, ion pairing agents such
s l-cysteine [13,14] are required, which when coupled
ith vapour generation and ICP-MS gives detection lim-

ts of between 0.03 and 0.11 ng mL−1. HPLC–ICP-MS with
ff-line pre-concentration [15] reached detection limits of
.2 ng L−1 for Hg2+ and 5.6 ng L−1 for CH3Hg, recently micro-
ore HPLC–ICP-MS has been used for the speciation analysis
f mercury [16], the use of a 1.0 mm i.d. analytical column
perating at a flow rate of 70 �L min−1 significantly reduced
he amount of solvent reaching the plasma leading to inter-
sting sensitivity gains. This approach achieved detection
imits of 11 ng L−1 for Hg2+ and 23 ng L−1 for CH3Hg with no
re-concentration, however the large dead volume of the ICP-
S sample introduction system prevented the authors from

ully exploiting the sensitivity that microbore HPLC should
ring.

In this work a mid-bore (2.1 mm i.d.) HPLC column has
een used, as the flow rates for these columns are most
uitable for coupling with the low flow (<500 �L min−1)
igher sensitivity concentric nebulisers now available on
he market. The reduced internal diameter means lower
ow rates can be used, meaning that less solvent is

ntroduced into the plasma increasing mass sensitivity,
he mid-bore column geometry has the additional advan-
age of suffering less from dead volume effects, when
ompared to microbore HPLC. The use of l-cysteine
nd 2-mercaptoethanol in the mobile phase means that
rganic solvents and the problems related with them are
voided.

The replacement of the sample injection loop with a micro-
olumn meant that large volumes (up to 5 mL) could be
njected onto the pre-concentration column then eluted onto
he analytical column, as the direct injection of 5 mL of sam-
le onto the column could compromise the chromatographic
esolution. This approach also allowed rapid on-line sample
re-concentration and matrix removal with minimal sample
andling by the analyst for matrices as complex as seawater.

njection of the entire pre-concentrated sample instead of an
liquot as is the case for off-line pre-concentration resulted in
ow detection limits with minimal matrix effects while avoid-
ng complex sample handling steps such as derivatisation.

The method was applied to seawater collected from the
agoon that surrounds the city of Venice. Monitoring of mer-
ury in and around the city of Venice is important as it is World
eritage Site located uniquely in a coastal lagoon that from the
950s through to the late 1980s was heavily contaminated with
ercury by chlor-alkali process discharges from the nearby
arghera chemical works [17]. As fishing is still an important

conomic activity in this body of water, careful monitoring of

he water quality of this delicate ecosystem is required, and
he number of samples necessary for this means that rapid,
nd sensitive methods for monitoring important pollutants
re required.
Flow rate 0.2 mL min−1

Injection volume 0.1–5 mL

2. Experimental

2.1. Instrumentation

The ICP-QMS used in this work was an Agilent 7500is (Agilent
Technologies, Yokogawa Analytical Systems, Tokyo, Japan) fit-
ted with a standard quartz spray chamber and a PolyPro-ST
concentric nebuliser (Elemental Scientific Inc. Omaha, USA).
This was coupled to an Agilent 1100 series HPLC pump (Agi-
lent, Waldbronn, Germany) fitted with a manual injection
valve (9125, Rheodyne, CA, USA) with a 100 �L (PEEK) sam-
ple loop (Alltech, Deerfield IL, USA), or an Opti-lynxTM 100 �L
micro-column filled with a C-18 silica based packing material
(Alltech, Deerfield IL, USA) instead of a sample loop. The mer-
cury species were separated isocratically on a 100 × 2.1 mm
Alltima HP C-18 3 �m column (Alltech, Deerfield IL, USA) at
a flow rate of 0.2 mL min−1, with a mobile phase of 0.5% l-
cysteine (m/v) and 0.05% 2-mercaptoethanol (v/v) dissolved
in ultra-pure water. The instrumental conditions are sum-
marised in Table 1. The masses monitored were m/z 202, the
most abundant mercury isotope and 184, a tungsten isotope to
check for interference peaks from the formation of 184W 18O.

2.2. Standards, reagents and materials

Mercury (II) chloride, methylmercury (II) chloride and 2-
mercaptoethanol were purchased from Sigma–Aldrich (Milan,
Italy) and the l-cysteine was purchased from VWR Interna-
tional (Milan, Italy). Stock standard solutions of approximately
1000 mg L−1 (as mercury) mercury chloride and CH3Hg chlo-
ride were prepared by weight from the respective salts.
Mercury chloride was dissolved in 1% (v/v) hydrochloric acid
(Suprapur grade, Merck, Darmstadt, Germany) in a 100 mL
amber glass bottle (Schott, Mainz, Germany); CH3HgCl was
dissolved in 10 mL of methanol (gradient UpS grade, Romil,
Cambridge, UK) in a 100 mL amber glass bottle and made up
to volume with 1% (v/v) hydrochloric acid, both solutions were

stored refrigerated in the dark until required [18]. Working
standards were made by serially diluting the stock standards
with ultra-pure water in acid washed amber glass bottles
(Schott, Duran, Mainz, Germany), samples were stored and
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Fig. 1 – (a) The separation of a 1 �g L−1 (100 �L injection)
mixed inorganic mercury and CH3Hg standard on a
100 × 2.1 mm Alltima HP C-18 3 �m HPLC column at a flow
rate of 0.2 mL min−1 with a mobile phase of 0.5% (v/v)
l-cysteine. (b) The separation of a 1 �g L−1 (100 �L injection)
mixed inorganic mercury and CH3Hg standard on a
100 × 2.1 mm Alltima HP C-18 3 �m HPLC column at a flow
rate of 0.2 mL min−1 with a mobile phase of 0.5% (m/v)
64 a n a l y t i c a c h i m i c a

diluted in acid washed amber glass vials with PTFE liners
(Supelco, Bellefonte, PA, USA). The water (18.2 M�) was gen-
erated by a Pure Lab Ultra water system (Elga Lab Water, High
Wycombe, UK). Syringe filters when used were 0.45 �m cellu-
lose acetate of 17 mm diameter (Alltech, Deerfield, IL, USA).
The 0.2 �m cellulose acetate filters used for filtering the sea
water samples were obtained from Sartorius (Germany), the
accuracy and reproducibility of the method was checked by
repeat analysis of the certified reference material BCR 579
coastal seawater certified for total mercury (IRMM, Geel, Bel-
gium).

3. Results and discussion

3.1. Optimisation of the chromatographic separation

To maintain maximum sensitivity for the detector (in this case
ICP-MS) it was decided to avoid methods using organic sol-
vents. Of these the use of l-cysteine as an ion pairing agent
seemed the most promising [13,19]. Fig. 1a shows a chro-
matogram of a mixed standard of 1 �g L−1 of inorganic mercury
and 1 �g L−1 of CH3Hg separated with a mobile phase of 0.5%
l-cysteine at a flow rate of 0.2 mL min−1, Fig. 1b shows the
same standard separated with the same column and flow rate
but with the addition of 0.05% (v/v) 2-mercaptoethanol to the
mobile phase. It can be seen from Fig. 1b that the addition of
this reagent has little effect on the area of the inorganic mer-
cury peak, but has caused an increase in the peak height of the
CH3Hg peak, and a sharpening of both analytical peaks. The
effect of further increases in the amount of 2-mercaptoethanol
in the mobile phase can be seen in Fig. 2, this clearly shows
that the addition of 2-mercaptoethanol increases the reten-
tion time for both analytes, but any increase above 0.05% (v/v)
results in a significant loss in chromatographic resolution.

3.2. Optimisation of the pre-concentration technique

To improve the sensitivity in order to detect mercury species
at environmental levels, it was decided to include a pre-
concentration technique. Aizpùn et al. [10] reported the use
of a C-18 column modified with 2-mercaptoethanol to pre-
concentrate the mercury species off-line, we decided to
modify this method to an on-line method so that the entire
pre-concentrated volume would be injected onto the column.
This was achieved by replacing the 100 �L sample loop with
a pre-concentration micro-column. The micro-column in this
case is an Opti-LynxTM trap cartridge with a bed volume of
100 �L, with an internal diameter of 4.6 mm and a length of
5.0 mm packed with a C-18 stationary phase. The sample is
manually loaded onto the column using a standard glass HPLC
syringe via the sample injection port, with the valve in the
load position, sample elution is achieved by switching the
valve to inject and the HPLC mobile phase elutes the analytes
from the micro-column and transports them to the analytical
column. Fig. 3 shows a chromatogram of a 100 �L injection

of a 100 ng L−1 per species (as mercury) mixed standard of
inorganic mercury and CH3Hg prepared in 1% (v/v) HCl, and
the same standard after the injection of a 1 mL aliquot onto
the pre-concentration column before chromatographic sepa-
l-cysteine and 0.05% (v/v) 2-mercaptoethanol.

ration. The peak areas for inorganic mercury and CH3Hg after
pre-concentration are increased by 10 and 6 times, respec-
tively, which corresponds to the increased volume injected for
inorganic mercury, but CH3Hg appears to be pre-concentrated
but with a roughly 50–60% efficiency.

Improvement of the pre-concentration of CH3Hg was
investigated by loading the pre-concentration column with
higher concentrations of the individual reagents present in
the mobile phase, this was done by injecting more con-
centrated solutions of 2-mercaptoethanol or l-cysteine onto
the pre-concentration column to increase the ion pairing

capacity. The effect of adding either 2-mercaptoethanol or
l-cysteine to the standards was tried to increase the concen-
tration of thiol–mercury complexes in solution. The results
are summarised in Tables 2a and 2b as percent (%) recover-
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Fig. 2 – The effect of increasing the concentration of
2-mercaptoethanol in the mobile phase on the separation
of inorganic and CH3Hg by HPLC using a 100 × 2.1 mm
Alltima HP C-18 3 �m HPLC column at a flow rate of
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Table 2a – Recovery (%) of the mercury species with
different column pre-treatments compared to their
pre-concentration with column pre-conditioning with
the HPLC mobile phase (0.5% (m/v) l-cysteine and 0.05%
(v/v) 2-mercaptoethanol) with the species standards
prepared in 1% (v/v) HCl

Pre-concentration
column pre-treatment

Percent recovery (%)

Hg2+ CH3Hg

Injection of 1 mL of 0.2%
(v/v) 2-mercaptoethanol

81 38

Injection of 1 mL of 1%
(m/v) l-cysteine

16 11

Injection of 1 mL ultra-pure
water

89 21

Table 2b – Recovery (%) of the mercury species in
different standard matrices on a C-18 micro-column
pre-conditioned with the mobile phase

Standard matrix Percent recovery (%)

Hg2+ CH3Hg

Standard prepared in 0.05%
(v/v) 2-mercaptoethanol

46 21

Standard prepared in 0.5%
(m/v) l-cysteine

45 72
.2 mL min−1 with a mobile phase of 0.5% (m/v) l-cysteine
nd increasing concentrations of 2-mercaptoethanol.

es compared to the integration results of standards injected
nder the same standard conditions as listed above (the
re-concentration column preconditioned with the mobile
hase and standards prepared in 1% (v/v) HCl). The percent
ecovery is calculated as the (integration results new condi-
ions/integration results with standard conditions) × 100.

The results in Table 2a shows that loading the column
ith more reagents such as l-cysteine or 2-mercaptoethanol
as a detrimental effect on the pre-concentration capability
f the column, and that washing the column with 1 mL of

ltra-pure water before use to remove them also had a nega-
ive effect demonstrating that the compounds present in the

obile phase play an important part in the pre-concentration
echanism.

ig. 3 – A chromatogram of a 100 �L injection of a 100 ng L−1

er species (as mercury) mixed standard of inorganic
ercury and CH3Hg prepared in 1% (v/v) HCl (small peaks,

ashed line), and the same standard after the injection of a
mL aliquot onto the pre-concentration column before
hromatographic separation (large peaks, solid line).
Standard prepared in 0.2%
(v/v) HCl

136 114

Standard prepared in water 155 348

Table 2b shows that making the standards in 2-
mercaptoethanol or l-cysteine showed no improvement, with
a net reduction in analyte recovery demonstrating that inor-
ganic mercury and CH3Hg bind to the ion pairing reagents
by forming on column complexes with l-cysteine and 2-
mercaptoethanol immobilized on the stationary phase, rather
than forming complexes in solution that then have an affin-
ity for the stationary phase. The results in dilute hydrochloric
acid and water show the only pre-concentration improve-
ment, showing that mercury and above all CH3Hg binds to
thiols at neutral or a slightly acidic pH. This is in agreement
with Percy et al. [14] who reported that at a pH between 5.0 and
8.0 cysteine is present as a zwitterion with the carboxyl group
deprotonated (pKa 1.95), the amino group protonated (pKa 9.05)
and the sulfhydryl group protonated. Our results are further
supported by the findings of Rabenstein and Fairhurst [20] who
reported that the sulfhydryl group binds CH3Hg most strongly
with a formation constant for CH3Hg cysteine complexes of
5.0 × 1015 but that at pH < 2 this complex disassociates due to
competition of protons for the sulfhydryl group.

In Fig. 4 the effect of sample volume (injection volume)
on the pre-concentration of a mixed 10 ng L−1 Hg2+ (closed
circle symbols) and CH3Hg standard (open circle symbols) in
ultra-pure water is reported, showing a linearity up to a pre-
concentration volume of 20 mL for methyl mercury when the
standards are made in ultra-pure water, but the Hg2+ profile is

curved demonstrating that the break through volume maybe
close to 20 mL. It proved to be impractical to inject larger vol-
umes accurately with a 1 mL syringe making it difficult to
obtain a precise determination of the break through volume,
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Fig. 4 – The effect of sample volume (injection volume) on
the pre-concentration of a mixed 10 ng L−1 Hg2+ (closed
circle symbols) and CH3Hg standard (open circle symbols)

Fig. 5 – The effect of column wash volume on the recovery
of mercury species (Hg2+ closed circles, CH3Hg inverted
open triangle symbols) from the pre-concentration column
and elimination of the seawater matrix (Li filled square
in ultra-pure water (n = 3, error bars of 2S.D.).

due to small errors in the amount of sample taken up each
time and human error resulting in smaller volumes injected
than expected. Using larger syringes made it more difficult to
push the liquid onto the column, the largest practical syringe
volume was found to be 5 mL, the back pressure generated
by the pre-concentration column when using syringes above
this volume caused the removable needles being used to lose
liquid causing inaccuracies in the amount injected. The back
pressure generated also proved to be too high for the use of
a peristaltic pump to load the column with the low pressure
fittings available in the laboratory.

The pre-concentration volume possible for real samples
was then investigated by spiking a filtered seawater sample
(filtered with a 0.2 �m membrane filter) with a mixed 10 ng L−1

Hg2+ and CH3Hg standard and injecting it undiluted onto
the pre-concentration column. A large characteristic sodium
emission was observed in the bullet region of the plasma when
the column was not washed after injection of a 1 mL sample of
seawater, due to elution of the seawater matrix. Different wash
volumes with ultra-pure water between 100 and 500 �L were
investigated; removal of the seawater matrix was monitored
by measuring Ca at m/z 43 and Li at m/z 7, and recovery of the
mercury species by measuring the peak areas of the repeated
1 mL injections of the standard in seawater. The results are
reported in Fig. 5, these show that Li is eliminated after a
wash volume of 300 �L and 500 �L is required to return the
Ca signal to baseline levels. Observing the plasma showed the
sodium emission disappeared after washing with 200 �L, but
the levels of Na present saturated the detector at wash vol-
umes below 300 �L, making it impractical to use m/z 23 for
monitoring of the washing process. The mercury recoveries
after washing were unchanged so 500 �L was adopted as the

washing volume.

To maintain the low blank levels necessary and avoid carry
over between samples, the sample syringe was washed three
times between samples or standards, the first wash was with
symbols, Ca open diamond symbols).

1% (v/v) HCl and the last 2 washes were with ultra-pure water
in 2 different sample bottles so a cleanliness gradient was
effectively achieved for the syringe washing solutions. The
first wash solution instead of being discharged to waste was
injected into the injection valve while in the inject position,
to clean the injection port and internal flow lines that were
not being effectively cleaned by the mobile phase. For the col-
umn washing for seawater samples, a separate 500 �L cleaned
glass syringe was used to exclusively inject the column wash-
ing solution of ultra-pure water taken from the third wash
solution bottle to avoid adding mercury to that already pre-
concentrated on the column.

Having demonstrated that the washing protocols were
effective, it was attempted to find the breakthrough volumes
for Hg2+ and CH3Hg in undiluted seawater, the results can be
seen in Fig. 6, demonstrating that the break through volume
for Hg2+ maybe close to 20 mL, but the curve for CH3Hg is lin-
ear up to 20 mL demonstrating that much higher volumes can
be pre-concentrated than those that can be injected using a
syringe, indicating that these columns may be suitable for use
to pre-concentrate the mercury species present off-line.

3.3. Calibration and analytical figures of merit

As mercury is only stable for short time periods when it
is in unacidified solutions [21,18], the sample and stan-
dard handling protocol of Planchon et al. [22] was applied
with the modification that all the standards were made in
amber glass bottles. Mixed analytical standards between 0
and 100 ng L−1 were made fresh in ultra-pure water from

acidified mother solutions (the concentrations of these were
periodically checked against a certified mercury standard),
samples were stored at −20 ◦C before analysis and were anal-
ysed immediately after defrosting without any acidification.
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Fig. 6 – The effect of sample volume (injection volume) on
the pre-concentration of a mixed 10 ng L−1 Hg2+ (closed
circle symbols) and CH3Hg standard (open circle symbols)
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Table 3a – Analytical figures of merit for the
HPLC–ICP-MS with the micro-column pre-concentration
method over a calibration range of 0–100 ng L−1 in
ultra-pure water

Figures of merit in pure
water

Hg2+ CH3Hg

Regression slope of linear
range 0–100 ng L−1

(cps/ng L−1)

56,241 102,424

Linear regression
coefficient (r2)

0.9993 0.9994

Precision of peak area,
10 ng L−1 (%R.S.D.) (n = 3)

13.1 28.6

Limit of detection (3 × S.D.
of concentration for a
0.5 ng L−1 standard) (n = 5)

0.07 0.02

Blank equivalent
concentration (ng L−1)

1.18 0.21

Table 3b – Analytical figures of merit for the
HPLC–ICP-MS with the micro-column pre-concentration
method over a calibration range of 0–100 ng L−1 in
filtered unacidified seawater

Figures of merit in
seawater

Hg2+ CH3Hg

Regression slope of linear
range 0–100 ng L−1

(cps/ng L−1)

64,600 90,782

Linear regression
coefficient (r2)

0.9968 0.9986

Precision of peak area,
10 ng L−1 (%R.S.D.) (n = 3)

8.9 5.5

Limit of detection (3 × S.D.
of concentration for a

−1

0.12 0.03
n undiluted filtered seawater (n = 3, error bars of 2S.D.).

he figures of merit for injections of 20 mL of standard are
eported in Table 3a. The reproducibility tests for the standard
njections were carried out on new freshly made standards,
s under these conditions the standards are only stable for
n hour at most. From Table 3a it can be seen that the exter-
al calibration is linear over the calibration range and that
he detection limit for CH3Hg is better than that for inorganic

ercury. The explanation for this is that the detection limit
or inorganic mercury is blank limited as there is inorganic

ercury present in all the reagents used during analysis. To
est the accuracy of the external calibration a standard addi-
ions calibration for Hg2+ and CH3Hg in a filtered seawater
ample was carried out using the same calibration range and
njection volumes, the results are reported in Table 3b, a sep-
rate spike of 10 ng L−1was made on the same sample and

epeatedly injected to find the spike recovery compared to the
xternal calibration curve. In addition to this the accuracy and
eproducibility of the method was checked by repeat analysis
f the certified reference material BCR 579 coastal seawater

Table 4 – Spike recovery for an aliquot of filtered unacidified sea
external calibration with standards made in ultra-pure water, a
the certified reference material BCR 579 spiked with 2.0 ng L−1 o
made in ultra-pure water and a matrix matched calibration wit

Sample Hg2+ spike reco

10 ng L−1 spike (n = 3) ± 1S.D. 108 ± 4

Sample

BCR 579a (n = 5) versus an external calibration
BCR 579a (n = 5) versus a matrix matched calibration

a BCR 579 coastal seawater reference material certified value 1.85 ± 0.2 ng
b (Result ± 1S.D.).
c CH3Hg spiked at 2.0 ng L−1 result ± S.D.
0.5 ng L standard) (n = 5)
Blank equivalent
concentration (ng L−1)

0.78 0.07

certified for total mercury. Analysis of this material revealed

that the mercury was wholly present as inorganic mercury,
so an aliquot was spiked with 2 ng L−1 of CH3Hg to check the
spike recovery for this analyte. The results can be seen in
Table 4, and show that with an external calibration method

water spiked at 10 ng L−1 with Hg2+ and CH3Hg versus an
nd the accuracy and reproducibility of repeat injections of
f CH3Hg versus an external calibration with standards

h standards made in filtered undiluted seawater

very (%) CH3Hg spike recovery (%)

84 ± 3

Hg2+ (ng L−1) CH3Hg (ng L−1)

2.21b ± 0.55 1.85c ± 0.23
1.86b ± 0.34 2.1c ± 0.14

L−1.
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Table 5 – Analysis of the particulate and dissolved phases of water samples from Venetian canals for mercury species

Sample
number

Volume
filtered (mL)

Mean concentration in
extract (ng L−1) (S.D.) n = 3

Mean concentration
in the particulate

phase (ng L−1)

Mean concentration in
the dissolved phase
(ng L−1) (S.D.) n = 2

Hg2+ CH3 Hg+ Hg2+ CH3Hg+ Hg2+ CH3Hg+

1 510 N.D. 48.0 (0.5) N.D. 0.29 0.24 (0.07) 0.06 (0.02)
2 500 N.D. 66.3 (2.1) N.D. 0.40 0.54 (0.05) 0.13 (0.01)
3 500 N.D. 72.1 (0.1) N.D. 0.46 0.38 (0.07) 0.07 (0.02)

in pristine environments; it is suitable for the determina-
Filter blank 500 3.2 (1.2) 4.9 (2.2)

over estimates the Hg2+ content of the spiked samples and
under estimates the CH3Hg content of the spiked samples,
which is reflected in the results for the spiked BCR 579 ref-
erence material. This suggests that there is a matrix effect
on the pre-concentration phase that needs to be corrected
for. The standard additions calibration (matrix matched cal-
ibration), when used to quantitate the Hg2+ and CH3Hg levels
in the reference material spiked with CH3Hg give excellent
agreement with the certified and spike values, respec-
tively, showing that matrix matching the standards with
seawater adequately corrects the matrix effects previously
identified.

3.4. Sample analysis

To see if the method was suitable for monitoring mercury lev-
els in the Venice lagoon three samples of surface water from
canals close to the University were analysed for inorganic and
CH3Hg. The samples were collected in clean glass bottles and
were transported to the laboratory for immediate analysis.
Aliquots of the samples (20 mL) were filtered and injected onto
the pre-concentration column; the column was then washed
with 500 �L of ultra-pure water to remove the seawater
matrix.

To investigate the concentration of CH3Hg associated with
the particulate phase, approximately 500 mL of the 3 sep-
arate unfiltered, unacidified samples of Venice canal water
were filtered using the filters specified above. These samples
had been left deliberately unacidified to avoid disturbing the
equilibrium between the particulate and dissolved phases.
The filters were transferred into 15 mL amber glass vials and
the CH3Hg present was extracted from the particulate matter
immobilized on the filter using 6 mL of an extraction solu-
tion of 7% (v/v) HCl and 1% (v/v) 2-mercaptoethanol with an
ultrasonic bath set to 60 ◦C with a sonication extraction time
of 30 min. The extract was filtered using 0.45 �m syringe fil-
ters and diluted 1:1 with ultra-pure water. A calibration blank
and the mixed mercury species standards (calibration range
0–500 ng L−1 of inorganic mercury and CH3Hg) were made
up in the diluted matrix (3.5% (v/v) HCl and 0.5% (v/v) 2-
mercaptoethanol) in acid washed 25 mL amber glass bottles
and were found to be stable for a week. As samples contain-
ing 2-mercaptoethanol cannot be pre-concentrated using the

micro-column method described above, a 100 �L PEEK sample
loop was fitted to the HPLC injection valve for sample intro-
duction of the sample extracts. The results are summarised
in Table 5, and show that after an effective pre-concentration
of the particulate phase on a filter, the CH3Hg concentration
is easily quantifiable with a good precision (<1% R.S.D.). Our
results for the particulate phase range from 0.29 to 0.46 ng L−1

which although from a small number of samples are similar
to those found by Bloom et al. [17] who found values ranging
from 0.05 to 0.27 ng L−1, the results of this author for CH3Hg
in the dissolved phase (filtered with 0.45 �m filters) are sim-
ilar to ours with values ranging from 0.02 to 0.10 ng L−1. The
results for the mercury levels in the dissolved phase show that
the method is sensitive enough to detect inorganic and methyl
mercury levels in the Venice lagoon, although methyl mercury
levels are close to our detection limits so these analyses may
need to be carried out with larger volumes during monitoring
campaigns. This will require the use of higher pressure fittings
for the peristaltic pump, or the use of a syringe pump or HPLC
pump to load the pre-concentration columns off-line before
use.

4. Conclusions

Methods for the determination of inorganic and CH3Hg in the
dissolved (filtered before analysis) phase of natural waters and
for the determination of CH3Hg in the particulate phase of nat-
ural waters has been developed. The use of a micro-column in
place of the sample loop in the injection valve allowed the
rapid and reproducible pre-concentration of dissolved mer-
cury species and the removal of possible matrix interferences
present in seawater (such as Na and Ca) prior to their determi-
nation. This method has been successfully applied to samples
from the Venetian lagoon, an important environment at the
northern end of the Adriatic Sea. The results found for Hg2+

agree well with a certified reference material, BCR 579, coastal
seawater, certified for mercury and the results for dissolved
levels of CH3Hg are similar to those reported in the litera-
ture for this environment. This method is not suitable for the
direct determination of CH3Hg in unfiltered samples, so the
filtrate was collected for samples of up to 500 mL. Extraction
of this filtrate enabled the determination of CH3Hg associated
with the particulate phase present at levels below 1 ng L−1.
Although this methodology does not reach the detection limits
of GC–ICP-MS with SPME or purge and trap pre-concentration
that have been used for the determination of mercury species
tion of mercury species in large numbers of samples from
polluted aquatic environments, as the time required for pre-
concentration and matrix removal is less than a minute per
replicate.
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