65 research outputs found
Enzyme-triggered model self-assembly in surfactant-cyclodextrin systems
We present here a host-guest approach to construct enzyme-triggered assembly systems on the basis of surfactant-cyclodextrin complexes and alpha-amylase. We realized enzyme-responsive model self-assembly systems including monolayers, micelles, and vesicles. The host-guest approach is expected to be extended to more complicated assembly systems with widespread applications.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305792800003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Chemistry, MultidisciplinarySCI(E)PubMed37ARTICLE597347-73494
Strigolactones spatially influence lateral root development through the cytokinin signaling network
Strigolactones are important rhizosphere signals that act as phytohormones and have multiple functions, including modulation of lateral root (LR) development. Here, we show that treatment with the strigolactone analog GR24 did not affect LR initiation, but negatively influenced LR priming and emergence, the latter especially near the root-shoot junction. The cytokinin module ARABIDOPSIS HISTIDINE KINASE3 (AHK3)/ARABIDOPSIS RESPONSE REGULATOR1 (ARR1)/ARR12 was found to interact with the GR24-dependent reduction in LR development, because mutants in this pathway rendered LR development insensitive to GR24. Additionally, pharmacological analyses, mutant analyses, and gene expression analyses indicated that the affected polar auxin transport stream in mutants of the AHK3/ARR1/ARR12 module could be the underlying cause. Altogether, the data reveal that the GR24 effect on LR development depends on the hormonal landscape that results from the intimate connection with auxins and cytokinins, two main players in LR development
NQO1 targeting prodrug triggers innate sensing to overcome checkpoint blockade resistance
Lack of proper innate sensing inside tumor microenvironment (TME) limits T cell-targeted immunotherapy. NAD(P)H:quinone oxidoreductase 1 (NQO1) is highly enriched in multiple tumor types and has emerged as a promising target for direct tumor-killing. Here, we demonstrate that NQO1-targeting prodrug β-lapachone triggers tumor-selective innate sensing leading to T cell-dependent tumor control. β-Lapachone is catalyzed and bioactivated by NQO1 to generate ROS in NQO1high tumor cells triggering oxidative stress and release of the damage signals for innate sensing. β-Lapachone-induced high mobility group box 1 (HMGB1) release activates the host TLR4/MyD88/type I interferon pathway and Batf3 dendritic cell-dependent cross-priming to bridge innate and adaptive immune responses against the tumor. Furthermore, targeting NQO1 is very potent to trigger innate sensing for T cell re-activation to overcome checkpoint blockade resistance in well-established tumors. Our study reveals that targeting NQO1 potently triggers innate sensing within TME that synergizes with immunotherapy to overcome adaptive resistance
Correlated two-particle diffusion in dense colloidal suspensions at early times: Theory and comparison to experiment
The spatially resolved diffusive dynamic cross correlations of a pair of colloids in dense quasi-two-dimensional monolayers of identical particles are studied experimentally and theoretically at early times where motion is Fickian. In very dense systems where strong oscillatory equilibrium packing correlations are present, we find an exponential decay of the dynamic cross correlations on small and intermediate length scales. At large separations where structure becomes random, an apparent power law decay with an exponent of approximately -2.2 is observed. For a moderately dense suspension where local structural correlations are essentially absent, this same apparent power law decay is observed over all probed interparticle separations. A microscopic nonhydrodynamic theory is constructed for the dynamic cross correlations which is based on interparticle frictional effects and effective structural forces. Hydrodynamics enters only via setting the very short-time single-particle self-diffusion constant. No-adjustable-parameter quantitative predictions of the theory for the dynamic cross correlations are in good agreement with experiment over all length scales. The origin of the long-range apparent power law is the influence of the constraint of fixed interparticle separation on the amplitude of the mean square force exerted on the two tagged particles by the surrounding fluid. The theory is extended to study high-packing-fraction 3D hard sphere fluids. The same pattern of an oscillatory exponential form of the dynamic cross correlation function is predicted in the structural regime, but the long-range tail decays faster than in monolayers with an exponent of -3open
Accelerated Transport through Sliding Dynamics of Rodlike Particles in Macromolecular Networks
Transport of rodlike particles in macromolecular networks is critical for
many important biological processes and technological applications. Here, we
report that speeding-up dynamics occurs once the rod length L reaches around
integral multiple of the network mesh size ax. We find that such a fast
diffusion follows the sliding dynamics and demonstrate it to be anomalous yet
Brownian. The good agreement between theoretical analysis and simulations
corroborates that sliding dynamics is an intermediate regime between hopping
and Brownian dynamics, and suggests a mechanistic interpretation based on the
rod-length dependent entropic free energy barrier. These theoretical findings
are captured by the experimental observations of rods in synthetic networks,
and bring new insight into the physics of the transport dynamics in confined
media of networks
Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.
Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM\u27s natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration.
SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711
The IPIN 2019 Indoor Localisation Competition—Description and Results
IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks
Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition
Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3.
Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612.
Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ”
Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018.
Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026.
Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091.
Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190.
Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU).
Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762.
Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202.
Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001
- …